Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents

Yıl: 2022 Cilt: 26 Sayı: 4 Sayfa Aralığı: 757 - 767 Metin Dili: İngilizce DOI: 10.16984/saufenbilder.950016 İndeks Tarihi: 08-09-2022

Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents

Öz:
The reaction medium plays a key role in organic synthesis and pharmaceutical research. There are many opinions on choosing the best condition, including cost and environmental implications, but the main requirement is that they have the necessary interaction with solvents to cause dissolution, precipitation, stabilization, or instability. For this purpose, in this article synthesis of the thiazole ring was made under various reaction conditions. So new compounds 2-(isoquinolin-5-ylimino)-3-phenylthiazolidin-4-one (1), (4-amino-3-phenylthiazol-2(3H)-ylidene) isoquinolin-5-amine (2), (4-amino-3-phenylthiazol-2(3H)-ylidene) isoquinolin-5-amine (3) were synthesized from the reaction between thiourea derivative and monochloroacetic acid, diethyloxalate and chloro acetonitrile. For this synthesizes were created in various reaction conditions, using different bases (sodium acetate/sodyum etoksit/ triethylamine or pyridine) and solvents (1,4-dioxane, toluene, acetic acid, ethanol, tetrahydrofuran, dimethyl formamide). At the end of these reactions, the best efficiency was obtained with the one-pot reaction using THF/DMF, Et3N. The structures of all novel compounds reported herein were established using FT-IR, 1H NMR, and 13C NMR spectra as well as elemental analysis technique.
Anahtar Kelime: 5-aminoisoquinoline thioureas thiazole rings one-pot reaction

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] T. Akiyama, J. Iwai, “Scandium trifluoro- methanesulfonate-catalyzed chemoselective allylation reactions of carbonyl compounds with tetraallylgermane in aqueous media,” Tetrahedron, vol. 55, no. 24, pp. 7499-7508, 1999.
  • [2] M. S. Saini, A. Kumar, J. Dwivedi, R. Singh, “A review: biological significances of heterocyclic compounds,” International Journal of Pharma Sciences and Research, vol. 4, no. 3, pp. 66-77, 2013.
  • [3] Y. Cheng, Z. T. Huang, M. X. Wang, “Heterocyclic enamines: The versatile intermediates in the synthesis of heterocyclic compounds and natural products,” Current Organic Chemistry, vol. 8, no. 4, pp. 325-51, 2004.
  • [4] N. Kaur “Review on the synthesis of six-membered N, N-heterocycles by microwave irradiation,” Synthetic Communications, vol. 45, no. 10, pp. 1145-82, 2015.
  • [5] N. Kaur “Photochemical reactions: synthesis of six-membered N-heterocycles,” Current Organic Synthesis, vol. 14, no. 7, pp. 972-98, 2017.
  • [6] M. Haji “Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates,” Beilstein Journal of Organic Chemistry, vol. 12, no. 1, pp. 1269-1301, 2016.
  • [7] S. Sarkar, A. A. Siddiqui, S. J. Saha, De. Rudranil, S. Mazumder, C. Banerjee, M. S. Iqbal, S. Nag, S. Adhikari, U. Bandyopadhyay, “Antimalarial Activity of small-molecule benzothiazole hydrazones,” Antimicrob Agents Chemother, vol. 60, no. 7, pp. 4217-28, 2016.
  • [8] G. Negri, C. Kascheres, A. J. Kascheres, “Recent development in preparation reactivity and biological activity of enamino ketones and enamino thiones and their utilization to prepare heterocyclic compounds,” Journal of Heterocyclic Chemistry, vol. 41, no. 4, pp. 461-491, 2004.
  • [9] A. Hazra, S. Mondala, A. Maitya, S. Naskara, P. Sahaa, R. Pairaa, K. B. Sahua, P. Pairaa, S. Ghoshb, C. Sinhab, A. Samanta, S. Banerjeea, N. B. Mondal, “Amberlite–IRA-402 (OH) ion exchange resin mediated synthesis of indolizines, pyrrolo [1, 2-a] quinolines and isoquinolines: Antibacterial and antifungal evaluation of the products,” European Journal of Medicinal Chemistry, vol. 46, no. 6, pp. 2132-40, 2011.
  • [10] S. Saeed, N. Rashid, P. G. Jones, M. Ali, R. Hussain, “Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents,” European Journal of Medicinal Chemistry, vol. 45, no. 4, pp. 1323-31, 2010.
  • [11] P. Zajdel, A. Partyka, K. Marciniec, A. J. Bojarski, M. Pawlowski, A. Wesolowska, “Quinoline-and isoquinoline-sulfonamide analogs of aripiprazole: novel antipsychotic agents?,” Future Medicinal Chemistry, vol. 6, no. 1, pp. 57-75, 2014.
  • [12] D. C. Liu, H. J. Zhang, C. M. Jin, Z. S. Quan, “Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticonvulsant agents,” Molecules, vol. 21, no. 3, pp. 164, 2016.
  • [13] E. G. Paronikyan, A. S. Noravyan, S. F. Akopyan, I. A. Dzhagatspanyan, I. M. Nazaryan, R. G. Paronikyan, “Synthesis and anticonvulsant activity of pyrano [4′, 3′: 4, 5] pyrido [2, 3-b] thieno [3, 2-d] pyrimidine derivatives and pyrimido [5′, 4′: 2, 3]-thieno [2,3-c] isoquinoline derivatives,” Pharmaceutical Chemistry Journal, vol. 41, no. 9, pp. 466-9, 2007.
  • [14] S. Shafia, M. Mahboob, A. Naveen, M. Chaitanya, M. G. Vanajad, A. M. Kalled, R. Pallud, M.S.Alama, “Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: their anti-inflammatory and anti-nociceptive activities,” European Journal of Medicinal Chemistry, vol. 49, no. 2012, pp. 324-33, 2012.
  • [15] V. S. Patilac, K. P. Nandreb, S. Ghoshd, V. J., Rao, B. A. Chopadede, B. Sridharf, S. V. Bhosaleg, S. V. Bhosaleab, “Synthesis, crystal structure and antidiabetic activity of substituted (E)-3-(Benzo[d]thiazol-2-ylamino)phenylprop-2-en-1-one,” European Journal of Medicinal Chemistry, vol. 59, no. 2013, pp. 304-9. 2013.
  • [16] E. Pitta, A. Geronikaki, S. Surmava, P. Eleftheriou, V. P. Mehta, E. V. Van der Eycken, “Synthesis and HIV-1 RT inhibitory action of novel (4/6-substituted benzo[d]thiazol-2-yl) thiazolidin-4-ones Divergence from the non-competitive inhibition mechanism,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 28, no. 1, pp. 113-22, 2013.
  • [17] W. Krzysztof, R. Guryn, O. P. Zuiderveld, H. Timmerman, “Non-imidazole histamine H3 ligands, Part 2: new 2-substituted benzothiazoles as histamine H3 antagonists,” Archiv der Pharmazie, vol. 332, no. 11, pp. 389-98, 1999.
  • [18] K. J. Wilson, C. R. Illig, N. Subasinghe, J. B. Hoffman, M. J. Rudolph, R. Soll, C. J. Molloy, R. Bone, D. Green, T. Randall, M. Zhang, F. A. Lewandowski, Z. Zhou, C. Sharp, D. Maguire, B. Grasberger, R. L. DesJarlais, J. Spurlino, “Synthesis of thiophene-2-carboxamidines containing 2-aminothiazoles and their biological evaluation as urokinase inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 11, no. 7, pp. 915-18, 2001.
  • [19] N. El-Ket, E. Kendjo, M. Thellier, L. Assoumou, V. Potard, A. Taieb, I. Tantaoui, E. Caumes, R. Piarroux, C. Roussel, P. Buffet, D. Costagliola, S. Jauréguiberry, “Propensity score analysis of artesunate versus quinine for severe imported Plasmodium falciparum malaria in France,” Clinical Infectious Diseases, vol. 70, no. 2, pp. 280-87, 2020.
  • [20] S. D’Alessandro, D. Scaccabarozzi, L. Signorini, F. Perego, D. P. Ilboudo, P., Ferrante, S. Delbue, “The use of antimalarial drugs against viral infection,” Microorganisms, vol. 8, no. 1, pp. 85, 2020.
  • [21] H. N. Karade, B. N. Acharya, M. Sathe, M. P. Kaushik, “Design, synthesis, and antimalarial evaluation of thiazole-derived amino acids,” Medicinal Chemistry Research, vol. 17, no. 1, pp. 19–29, 2008.
  • [22] P. Ghosh, M. J. Deka, A. K. Saikia, “Lewis acid mediated intramolecular C–O bond formation of alkanol-epoxide leading to substituted morpholine and 1, 4-oxazepane derivatives: total synthesis of (±) –viloxazinec,” Tetrahedron, vol. 72, no. 5, pp. 690-698, 2016.
  • [23] R. M. Abdel-Rahman “Role of uncondensed 1,2,4-triazine compounds and related heterobicyclic systems as therapeutic agents: a review,” Pharmazie, vol. 56, no. 1, pp. 18-22, 2001.
  • [24] A. R. Surray “4-Thiazolidones.IV. The preparation of some 3-alkylaminoalkyl-2-aryl derivatives,” Journal of the American Chemical Society, vol. 71, no. 10, pp. 3354–56, 1949.
  • [25] N. G. Voznesenskaia, O. I. Shmatova, M. M. Ilyin, M. M. Ilyin Jr, V. G. Nenajdenko, “Enantioselective synthesis of thiazole derived α perfluoroalkylated 5–7 membered amines,” European Journal of Organic Chemistry, vol. 2019, no. 9, pp. 1893-903, 2019.
  • [26] N. Berber, M. Arslan, F. Vural, A. Ergun, N. Gençer, O. Arslan, “Synthesis of new series of thiazol (2(3H) ylideneamino) benzene- sulfonamide derivatives as carbonic anhydrase inhibitors,” Journal of Biochemical and Molecular Toxicology, vol. 34, no. 12, pp. e22596, 2020.
  • [27] N. Berber, M. Arslan, Ç. Bilen, Z. Sackes, N. Gencer, O. Arslan, “Synthesis and evaluation of new phthalazine substituted β-lactam derivatives as carbonic anhydrase inhibitors,” Russian Journal of Bioorganic Chemistry, vol. 41, no. 4 pp. 414-20, 2015.
  • [28] N. Berber “Synthesis of certain new morpholine derivatives bearing a thiazole moiety,” Sakarya University Journal of Science and Technology, vol. 23, no. 4, pp. 554-58, 2019.
  • [29] S. Kılıcaslan, M. Arslan, Z. Ruya, Ç. Bilen, A. Ergün, N. Gençer, O. Arslan, “Synthesis and evaluation of sulfonamide-bearing thiazole as carbonic anhydrase isoforms hCA I and hCA II,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 31, no. 6, pp. 1300-1305, 2016.
  • [30] H. Saad “The synthesis of some new sulfur-bearing various heterocyclic systems derived from asymmetrical n,n′-disubstituted thiourea derivatives,” Phosphorus, Sulfur, and Silicon, vol. 181, no. 7, pp. 1557-1567, 2006.
  • [31] H. A. Abdel-Azız, H. S. El-Zahabi, K. M. Dawood, “Microwave-assisted synthesis and in-vitro anti-tumor activity of 1,3,4-triaryl-5-N-arylpyrazole carboxamides,” European Journal of Medicinal Chemistry, vol. 45, no. 6, pp. 2427-2432, 2010.
  • [32] H. M. Abumelha “Synthesis and antioxidant assay of new nicotinonitrile analogues clubbed thiazole, pyrazole and/or pyridine ring systems,” Journal of Heterocyclic Chemistry, vol. 57, no. 3, pp. 1011-1022, 2020.
  • [33] Y. Feng, X. Ding, T. Chen, L. Chen, F. Liu, X. Jia, X. Luo, X. Shen, K. Chen, H. Jiang, H. Wang, H. Liu, D. Liu, “Design, synthesis, and interaction study of quinazoline-2 (1 H)-thione derivatives as novel potential Bcl-xL inhibitors,” Journal of Medicinal Chemistry, vol. 53, no. 9, pp. 3465-3479, 2010.
  • [34] H. A. Morsy, A. H. Moustafa “A facile approach for synthesis of thiazines-, thiazoles-and triazoles-annulated 6-styryl-2-thiouracil derivative,” Journal of the Iranian Chemical Society, vol. 17, no. 1, pp. 119-125, 2020.
  • [35] M. Sathishkumar, S. Nagarajan, P. Shanmugavelan, M. Dinesh, A. Ponnuswamy, “A facile, rapid, one-pot regio/stereoselective synthesis of 2-iminothiazolidin-4-ones under solvent/ scavenger-free conditions,” Beilstein Journal of Organic Chemistry, vol. 9, no. 1, pp. 689-697, 2013.
  • [36] A. R. Sayed, S. M. Gomha, E. A. Taher, Z. A. Muhammad, H. R. El-Seedi, H. M. Gaber, M. M. Ahmed, “One-pot synthesis of novel thiazoles as potential anti-cancer agents,” Drug Design, Development and Therapy, vol. 14, no. 2020, pp. 1363, 2020.
  • [37] M. El-Naggar, W. M. Eldehna, H. Almahli, A. Elgez, M. Fares, M. M. Elaasser, H. A. Abdel-Aziz, “Novel thiazolidinone/ thiazolo [3,2-a] benzimidazolone-isatin conjugates as apoptotic anti-proliferative agents towards breast cancer: one-pot synthesis and in vitro biological evaluation,” Molecules, vol. 23, no. 6, pp. 1420, 2018.
  • [38] C. B. Singh, H. Ghosh, S. Murru, B. K. Patel, “Hypervalent iodine (III)-mediated regioselective N-acylation of 1, 3-disubstituted thioureas,” The Journal of Organic Chemistry, vol. 73, no. 7, pp. 2924-2927, 2008.
  • [39] T. Wirth, M. Ochiai, V. V. Zhdankin, G. F. Koser, H. Tohma, Y. Kita, “Topics in Current Chemistry: Hypervalent iodine chemistry-modern developments in organic synthesis,” Wirth, T, vol. 2002, pp. 1-248. 2002.
  • [40] R. Yella, H. Ghosh, B. K. Patel, “It is “2-imino-4-thiazolidinones” and not thiohydantoins as the reaction product of 1,3-disubstituted thioureas and chloroacetylchloride,” Green Chemistry, vol. 10, no. 12, pp. 1307-1312, 2008.
  • [41] H. Ghosh, S. Sarkar, A. R. Ali, B. K. Patel, “Oxidative desulfurization of disubstituted thioureas using Pb (II) salts and investigation of p K a-dependent regioselective N-acylation,” Journal of Sulfur Chemistry, vol. 31, no. 1, pp. 1-11, 2010.
  • [42] V. Krishnakumar, N. Surumbarkuzhalı, S. Muthunatesan “Scaled quantum chemical studies on the vibrational spectra of 4-bromo benzonitrile,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 71, no. 5, pp. 1810-1813, 2009.
  • [43] N. Subramanian, N. Sundaraganesan, J. Jayabharathi “Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1, 2-bis (3-methoxy-4-hydroxybenzylidene) hydrazine by density functional method,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 76, no. 2, pp. 259-269, 2010.
APA Berber N (2022). Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents. , 757 - 767. 10.16984/saufenbilder.950016
Chicago Berber Nurcan Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents. (2022): 757 - 767. 10.16984/saufenbilder.950016
MLA Berber Nurcan Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents. , 2022, ss.757 - 767. 10.16984/saufenbilder.950016
AMA Berber N Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents. . 2022; 757 - 767. 10.16984/saufenbilder.950016
Vancouver Berber N Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents. . 2022; 757 - 767. 10.16984/saufenbilder.950016
IEEE Berber N "Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents." , ss.757 - 767, 2022. 10.16984/saufenbilder.950016
ISNAD Berber, Nurcan. "Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents". (2022), 757-767. https://doi.org/10.16984/saufenbilder.950016
APA Berber N (2022). Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(4), 757 - 767. 10.16984/saufenbilder.950016
Chicago Berber Nurcan Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, no.4 (2022): 757 - 767. 10.16984/saufenbilder.950016
MLA Berber Nurcan Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.26, no.4, 2022, ss.757 - 767. 10.16984/saufenbilder.950016
AMA Berber N Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2022; 26(4): 757 - 767. 10.16984/saufenbilder.950016
Vancouver Berber N Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2022; 26(4): 757 - 767. 10.16984/saufenbilder.950016
IEEE Berber N "Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents." Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26, ss.757 - 767, 2022. 10.16984/saufenbilder.950016
ISNAD Berber, Nurcan. "Synthesis and Characterization of Thiazole Compounds in the Presence of Various Reagents, Catalysts and Solvents". Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/4 (2022), 757-767. https://doi.org/10.16984/saufenbilder.950016