Yıl: 2022 Cilt: 8 Sayı: 1 Sayfa Aralığı: 63 - 75 Metin Dili: İngilizce DOI: 10.28979/jarnas.1003367 İndeks Tarihi: 14-09-2022

Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4

Öz:
Hybrid organic-inorganic perovskites (HOIPs) exhibit multiple structural phase transi- tions, which result in enhanced mechanical and electronic properties of these perovskites. Order-dis- order of organic components was thought to be the main factor to cause these phase transitions up to the last decade; however, recent research about HOIPs have shown that the structural phase transition also occurs with the induced pressure or temperature. The research studies related to the pressure have attracted a great deal of scholarly interest due to its contribution to the func-tionality of HOIPs in many current applications. Two-dimensional halide perovskites having been synthesized in the last few years have been increasingly studied thanks to its superior hysteresis in flexibility and mechanical properties under pressure. It is important to understand and model theoretically how induced pressure affects mechanical and electronic properties of (PMA)2PbI4 in order to develop new potential appli- cations in optoelectron-ics. In this study, the isothermal mode-Grüneisen parameter, the isothermal compressibility, and the bulk modulus were calculated as functions of pressure at ambient temperature by using the calculated Raman frequencies and observed volume data for the selected IR modes in (PMA)2PbI4. These calculated parameters were compared with the observed measurements reported for the Pbca, Pccn and Pccn (isostructural) phases in the studied perovskites. The results obtained in the present study, which were highly compatible with the experimental measurements, showed that (PMA)2PbI4 is usable in optoelectronic applications
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Bandiello, E., Ávila, J., Gil-Escrig, L., Tekelenburg, E., Sessolo, M., & Bolink, H. J. (2016). Influence of mobile ions on the electroluminescence characteristics of methylammonium lead iodide perovskite di- odes. Journal of Materials Chemistry A, 4(47), 18614-18620. doi: 10.1039/C6TA06854E
  • Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. doi: 10.1103/ PhysRev.71.809
  • Breternitz, J., & Schorr, S. (2018). What Defines a Perovskite? Advanced Energy Materials, 8(34), 1802366. doi: https://onlinelibrary.wiley.com/doi/10.1002/aenm.201802366
  • Cai, Y., Lv, J., & Feng, J. (2012). Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvaler- ate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy. Journal of Polymers and the Environment, 21, 108-114. Doi: 10.1007/s10924-012-0534-2
  • Dou, L., Wong, A. B., Yu, Y., Lai, M., Kornienko, N., Eaton, S. W., . . . Yang, P. (2015). Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255), 1518-1521. doi:10.1126/ science.aac7660
  • Einstein, A. (1907). Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. An- nalen der Physik, 327(1), 180-190. doi: https://doi.org/10.1002/andp.19063270110
  • Fang, H.-H., Raissa, R., Abdu-Aguye, M., Adjokatse, S., Blake, G. R., Even, J., & Loi, M. A. (2015). Hybrid Perovskites: Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crys- tals (Adv. Funct. Mater. 16/2015). Advanced Functional Materials, 25(16), 2346-2346. doi: https://doi. org/10.1002/adfm.201570107
  • Grüneisen, E. (1912). Theorie des festen Zustandes einatomiger Elemente. Annalen der Physik, 344(12), 257-306. doi: https://doi.org/10.1002/andp.19123441202
  • Kawano, N., Koshimizu, M., Sun, Y., Yahaba, N. F., Yutaka, Yanagida, T., & Asai, K. (2014). Effects of Organic Moieties on Luminescence Properties of Organic–Inorganic Layered Perovskite-Type Com- pounds. The Journal of Physical Chemistry C, 118(17), 9101-9106. doi: 10.1021/jp4114305
  • Kooijman, A., Muscarella, L. A., & Williams, R. M. (2019). Perovskite Thin Film Materials Stabilized and Enhanced by Zinc(II) Doping. Applied Sciences, 9(8), 1678. Doi: https://doi.org/10.3390/app9081678
  • Kurt, A. (2020). Pressure dependence of the Raman modes for orthorhombic and monoclinic phases of CsPbI3 at room temperature. Journal of Applied Physics, 128(7), 075106. doi: 10.1063/5.0012355
  • Liu, S., Li, F., Han, X., Xu, L., Yao, F., & Liu, Y. (2018). Preparation and Two-Photon Photoluminescence Properties of Organic Inorganic Hybrid Perovskites (C6H5CH2NH3)2PbBr4 and (C6H5CH2NH3)2P- bI4. Applied Sciences, 8(11), 2286. Doi: https://doi.org/10.3390/app8112286
  • Mao, H.-K., Chen, X.-J., Ding, Y., Li, B., & Wang, L. (2018). Solids, liquids, and gases under high pressure. Reviews of Modern Physics, 90(1), 015007. doi: 10.1103/RevModPhys.90.015007
  • Ou, T., Liu, C., Yan, H., Han, Y., Wang, Q., Liu, X., . . . Gao, C. (2019). Effects of pressure on the ion- ic transport and photoelectrical properties of CsPbBr3. Applied Physics Letters, 114(6), 062105. doi: 10.1063/1.5079919
  • Ou, T., Ma, X., Yan, H., Shen, W., Liu, H., Han, Y., . . . Gao, C. (2018). Pressure effects on the inductive loop, mixed conduction, and photoresponsivity in formamidinium lead bromide perovskite. Applied Physics Letters, 113(26), 262105. doi: 10.1063/1.5063394
  • Planck, M. (1901). Ueber das Gesetz der Energieverteilung im Normalspectrum. Annalen der Physik, 309(3), 553-563. doi: https://doi.org/10.1002/andp.19013090310
  • Qin, X., Dong, H., & Hu, W. (2015). Green light-emitting diode from bromine based organic-inorganic halide perovskite. Science China Materials, 58(3), 186-191. doi: 10.1007/s40843-015-0035-4
  • Ren, X., Yan, X., Ahmad, A. S., Cheng, H., Li, Y., Zhao, Y., . . . Wang, S. (2019). Pressure-Induced Phase Transition and Band Gap Engineering in Propylammonium Lead Bromide Perovskite. The Journal of Physical Chemistry C, 123(24), 15204-15208. doi: 10.1021/acs.jpcc.9b02854
  • Ren, X., Yan, X., Gennep, D. V., Cheng, H., Wang, L., Li, Y., . . . Wang, S. (2020). Bandgap widening by pressure-induced disorder in two-dimensional lead halide perovskite. Applied Physics Letters, 116(10), 101901. doi: 10.1063/1.5143795
  • Stacey, F. D., & Hodgkinson, J. H. (2019). Thermodynamics with the Grüneisen parameter: Fundamentals and applications to high pressure physics and geophysics. Physics of the Earth and Planetary Interiors, 286, 42. doi: 10.1016/j.pepi.2018.10.006
  • Tian, C., Liang, Y., Chen, W., Huang, Y., Huang, X., Tian, F., & Yang, X. (2020). Hydrogen-bond en- hancement triggered structural evolution and band gap engineering of hybrid perovskite (C6H5CH2N- H3)2PbI4 under high pressure. Physical Chemistry Chemical Physics, 22(4), 1841-1846. doi: 10.1039/ C9CP05904K
  • Wang, L., Ou, T., Wang, K., Xiao, G., Gao, C., & Zou, B. (2017). Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride. Applied Physics Letters, 111(23), 233901. doi: 10.1063/1.5004186
  • Wang, L., Wang, K., Xiao, G., Zeng, Q., & Zou, B. (2016). Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride. The Journal of Physical Chemistry Letters, 7(24), 5273-5279. doi: 10.1021/acs.jpclett.6b02420
  • Wang, Y., Lü, X., Yang, W., Wen, T., Yang, L., Ren, X., . . . Zhao, Y. (2015). Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. Journal of the American Chemical Society, 137(34), 11144-11149. doi: 10.1021/ jacs.5b06346
  • Yang, S., Niu, W., Wang, A.-L., Fan, Z., Chen, B., Tan, C., . . . Zhang, H. (2017). Ultrathin Two-Dimension- al Organic–Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability. Angewandte Chemie International Edition, 56(15), 4252-4255. doi: https://doi.org/10.1002/ anie.201701134
  • Yuan, Y., Liu, X.-F., Ma, X., Wang, X., Li, X., Xiao, J., . . . Wang, L. (2019). Large Band Gap Narrowing and Prolonged Carrier Lifetime of (C4H9NH3)2PbI4 under High Pressure. Advanced Science, 6(15), 1900240. doi: https://doi.org/10.1002/advs.201900240
  • Zhang, L., Wang, Y., Lv, J., & Ma, Y. (2017). Materials discovery at high pressures. Nature Reviews Mate- rials, 2(4), 17005. doi: 10.1038/natrevmats.2017.5
APA Kurt A (2022). Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4. , 63 - 75. 10.28979/jarnas.1003367
Chicago Kurt Arzu Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4. (2022): 63 - 75. 10.28979/jarnas.1003367
MLA Kurt Arzu Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4. , 2022, ss.63 - 75. 10.28979/jarnas.1003367
AMA Kurt A Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4. . 2022; 63 - 75. 10.28979/jarnas.1003367
Vancouver Kurt A Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4. . 2022; 63 - 75. 10.28979/jarnas.1003367
IEEE Kurt A "Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4." , ss.63 - 75, 2022. 10.28979/jarnas.1003367
ISNAD Kurt, Arzu. "Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4". (2022), 63-75. https://doi.org/10.28979/jarnas.1003367
APA Kurt A (2022). Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4. Journal of advanced research in natural and applied sciences (Online), 8(1), 63 - 75. 10.28979/jarnas.1003367
Chicago Kurt Arzu Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4. Journal of advanced research in natural and applied sciences (Online) 8, no.1 (2022): 63 - 75. 10.28979/jarnas.1003367
MLA Kurt Arzu Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4. Journal of advanced research in natural and applied sciences (Online), vol.8, no.1, 2022, ss.63 - 75. 10.28979/jarnas.1003367
AMA Kurt A Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4. Journal of advanced research in natural and applied sciences (Online). 2022; 8(1): 63 - 75. 10.28979/jarnas.1003367
Vancouver Kurt A Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4. Journal of advanced research in natural and applied sciences (Online). 2022; 8(1): 63 - 75. 10.28979/jarnas.1003367
IEEE Kurt A "Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4." Journal of advanced research in natural and applied sciences (Online), 8, ss.63 - 75, 2022. 10.28979/jarnas.1003367
ISNAD Kurt, Arzu. "Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modu- lus as Functions Of Pressure In (C6H5CH2NH3)2PBI4". Journal of advanced research in natural and applied sciences (Online) 8/1 (2022), 63-75. https://doi.org/10.28979/jarnas.1003367