Yıl: 2022 Cilt: 7 Sayı: 1 Sayfa Aralığı: 403 - 410 Metin Dili: İngilizce DOI: 10.30728/boron.953341 İndeks Tarihi: 19-09-2022

Investigating the effect of drawing process parameters on borosilicate glass fiber thickness

Öz:
Borosilicate glasses have many usage areas due to their high thermal and chemical resistance with a very low thermal expansion coefficient. The number of waste borosilicate glasses is increasing in direct proportion to their usage areas. Creating new usage areas by recycling these glasses will provide cost savings. In this paper, the fiber drawing method is used to recycle borosilicate glass. The aim of this article is to investigate the effect of winding speed and temperature of drawing process on fiber thickness. The fiber drawing process was performed at specific temperatures (1100, 1200, and 1300°C) and at specific winding speeds (50, 175, and 300 rpm). In this context, the thermal behavior of borosilicate glasses was determined by DSC and TGA analysis. The structural and chemical properties and corrosion resistance of borosilicate glass fibers were examined by SEM, XPS, and corrosion test, respectively. The results show that the fiber thickness increased with the increase in the amount of material fed in the crucible, while it decreased with the increase of fiber drawing speed and time.
Anahtar Kelime: Borosilicate glass Fiber drawing Glass fiber

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Lowenstein, K. L. (1975). The manufacture of continuous glass fibres present trends ın the use of platınum alloys. Platinum Metals Review, 19(3), 82-87.
  • [2] Cevahir, A. (2017). Fiber Technology for Fiber-Rein- forced Composite. Glass Fibers (pp. 99-121). Woodhead Publishing. ISBN 978-0-08-101871-2.
  • [3] Zou, C., Shi, Y., & Qian, X. (2020). Characterization of glass fiber felt and its performance as an air filtration me- dia. Journal of Industrial Textiles, 1528083720961410.
  • [4] Jones, F. R., & Huff, N. T. (2018). The structure and prop- erties of glass fibers. In Handbook of Properties of Textile and Technical Fibres (pp. 757-803). Woodhead Publish- ing. ISBN: 9780081018866.
  • [5] Jones, F. R. (2001). High-Performance Fibres. In Hearle, J. W. (Ed.), Glass Fibres (pp. 191-235). Elsevier.
  • [6] Bunsell, A. R. (1988). Fibre Reinforcements for Com- posite Materials. North Holland Publishing Co. ISBN 978-0444428011.
  • [7] Vallittu, P. K., Närhi, T. O., & Hupa, L. (2015). Fiber glass- bioactive glass composite for bone replacing and bone anchoring implants. Dental Materials, 31(4), 371-381.
  • [8] Shen, N., Samanta, A., Wang, Q., & Ding, H. (2017). Se- lective laser melting of fiber-reinforced glass composites. Manufacturing Letters, 14, 6-9.
  • [9] Liu, S., & Banta, L. E. (2010). Parametric study of glass fiber drawing process. International Journal of Applied Glass Science, 1(2), 180-187.
  • [10] Yurdakul, A., Gunkaya, G., Dolekcekic, E., Kavas, T., & Karasu, B. (2015). Novel glass compositions for fiber drawing. Ceramics International, 41(10), 13105-13114.
  • [11] Chouffart, Q. (2018). Experimental and numerical in- vestigation of the continuous glass fiber drawing pro- cess [Ph.D. Thesis, University of Liège].
  • [12] Brφndsted, P., Lilholt, H., & Lystrup, A. (2018). Compos- ite materials for wind power turbine blades. In Renew- able Energy, 182-216. Routledge.
  • [13] Sathishkumar, T. P., Satheeshkumar, S., & Naveen, J. (2014). Glass fiber-reinforced polymer composites-a review. Journal of Reinforced Plastics and Composites, 33(13), 1258-1275.
  • [14] Ashok Kumar, M., Ramachandra Reddy, G., Siva Bharathi, Y., Venkata Naidu, S., & Naga Prasad Nai- du, V. (2010). Frictional coefficient, hardness, impact strength, and chemical resistance of reinforced sisal- glass fiber epoxy hybrid composites. Journal of Com- posite Materials, 44(26), 3195-3202.
  • [15] Chandra, D. S., Reddy, K. V. K., & Hebbal, O. (2018). Fabrication and mechanical characterization of glass and carbon fibre reinforced composite’s used for ma- rine applications. International Journal of Engineering & Technology, 7(4), 228-232.
  • [16] Krug Iii, D. J., Asuncion, M. Z., Popova, V., & Laine, R. M. (2013). Transparent fiber glass reinforced compos- ites. Composites Science and Technology, 77, 95-100.
  • [17] Petersen, H. N., Kusano, Y., Brøndsted, P., & Almdal, K. (2013). Preliminary characterization of glass fiber sizing. 34th Risø International Symposium on Materials Science. 34, 333-340.
  • [18] Nishii, J., Morimoto, S., Inagawa, I., Iizuka, R., Ya- mashita, T., & Yamagishi, T. (1992). Recent advances and trends in chalcogenide glass fiber technology: a re- view. Journal of Non-Crystalline Solids, 140, 199-208.
  • [19] Chouffart, Q., Simon, P., & Terrapon, V. E. (2016). Nu- merical and experimental study of the glass flow and heat transfer in the continuous glass fiber drawing pro- cess. Journal of Materials Processing Technology, 231, 75-88.
  • [20] Liu, S. (2010). Process model and control system for the glass fiber drawing process. West Virginia Univer- sity.
  • [21] Xu, D., Dai, S., You, C., Wang, Y., Han, X., Lin, C., ... & Chen, F. (2017). Optimization of draw processing pa- rameters for As2Se3 glass fiber. Optical Fiber Technol- ogy, 38, 46-50.
  • [22] Choudhury, S. R., & Jaluria, Y. (1998). Practical aspects in the drawing of an optical fiber. Journal of Materials Research, 13(2), 483-493.
  • [23] Cousins, D. S., Suzuki, Y., Murray, R. E., Samaniuk, J. R., & Stebner, A. P. (2019). Recycling glass fiber ther- moplastic composites from wind turbine blades. Journal of Cleaner Production, 209, 1252-1263.
  • [24] Krohn, D. A., & Cooper, A. R. (1969). Strengthening of glass fibers: I, cladding. Journal of the American Ce- ramic Society, 52(12), 661-664.
  • [25] Liu, S., & Banta, L. E. (2010). Parametric study of glass fiber drawing process. International Journal of Applied Glass Science, 1(2), 180-187.
  • [26] Lima, M. M., & Monteiro, R. (2001). Characterisation and thermal behaviour of a borosilicate glass. Thermo- chimica Acta, 373(1), 69-74.
  • [27] Gupta, P. K., Lur, M. L., & Bray, P. J. (1985). Boron co- ordination in rapidly cooled and in annealed aluminum borosilicate glass fibers. Journal of the American Ce- ramic Society, 68(3), C-82.
  • [28] Wallenberger, F. T., Watson, J. C., & Li, H. (2000). Glass Fibers. PPG Industries. Inc., ASM International, Ohio, USA.
  • [29] Karasu, B., Demirel, İ., Aydın, S., Dalkıran, M., & Bey- za, L. İ. K. (2020). Past and Present Approaches to Borosilicate Glasses. El-Cezeri Journal of Science and Engineering, 7(2), 940-969.
  • [30] Kaky, K. M., Şakar, E., Akbaba, U., Kasapoğlu, A. E., Sayyed, M. I., Gür, E., ... & Mahdi, M. A. (2019). X-ray photoelectron spectroscopy (XPS) and gamma-ray shielding investigation of boro-silicate glasses con- tained alkali/alkaline modifier. Results in Physics, 14, 102438.
  • [31] Miura, Y., Kusano, H., Nanba, T., & Matsumoto, S. (2001). X-ray photoelectron spectroscopy of sodium borosilicate glasses. Journal of Non-Crystalline Solids, 290(1), 1-14.
  • [32] Yu, X. G., Gong, Y., Bi, W. Y., Tian, X. C., Ma, H. W., Zhao, H. F., ... & Wang, L. (2008). XPS studies on ZrO2 thin films deposited on glass substrate by sol-gel. In Key Engineering Materials. 368, 1277-1279. Trans Tech Publications Ltd.
  • [33] Zhang, Y., Zhang, J., Jin, Y., Zhang, J., Hu, G., Lin, S., ... & Xiang, W. (2017). Construction and nonlinear optical characterization of CuO quantum dots doped Na2O-CaO-B2O 3-SiO2 bulk glass. Journal of Mate- rials Science: Materials in Electronics, 28(17), 13201- 13208.
  • [34] Mekki, A., Holland, D., McConville, C. F., & Salim, M. (1996). An XPS study of iron sodium silicate glass sur- faces. Journal of Non-Crystalline Solids, 208(3), 267- 276.
  • [35] Nesbitt, H. W., Bancroft, G. M., & Ho, R. (2017). XPS valence band study of Na-silicate glasses: energetics and reactivity. Surface and Interface Analysis, 49(13), 1298-1308.
  • [36] Sharma, A., Jain, H., & Miller, A. C. (2001). Surface modification of a silicate glass during XPS experiments. Surface and Interface Analysis: An International Jour- nal devoted to the development and application of tech- niques for the analysis of surfaces, interfaces and thin films, 31(5), 369-374.
  • [37] Hsieh, C. H., Jain, H., Miller, A. C., & Kamitsos, E. I. (1994). X-ray photoelectron spectroscopy of Al-and B- substituted sodium trisilicate glasses. Journal of Non- Crystalline Solids, 168(3), 247-257.
  • [38] Hubert, M., & Faber, A. J. (2014). On the structural role of boron in borosilicate glasses. Physics and Chemis- try of Glasses-European Journal of Glass Science and Technology Part B, 55(3), 136-158.
  • [39] Angeli, F., Villain, O., Schuller, S., Charpentier, T., de Ligny, D., Bressel, L., & Wondraczek, L. (2012). Effect of temperature and thermal history on borosilicate glass structure. Physical Review B, 85(5), 054110.
  • [40] Jones, F. R., & Huff, N. T. (2018). The structure and properties of glass fibers. In Handbook of Properties of Textile and Technical Fibres. 757-803. Woodhead Pub- lishing.
  • [41] Tait, J. C., & Mandolesi, D. L. (1983). The chemical durability of alkali aluminosilicate glasses (No. AECL- 7803). Atomic Energy of Canada Ltd.
  • [42] Liu, H., Yang, R., Wang, Y., & Liu, S. (2013). Influence of alumina additions on the physical and chemical prop- erties of lithium-iron-phosphate glasses. Physics Pro- cedia, 48, 17-22.
APA YILDIRIM C, TURGUT E, sürdem s, Yörükoğlu A (2022). Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. , 403 - 410. 10.30728/boron.953341
Chicago YILDIRIM CENNET,TURGUT Eda,sürdem sedat,Yörükoğlu Abdulkerim Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. (2022): 403 - 410. 10.30728/boron.953341
MLA YILDIRIM CENNET,TURGUT Eda,sürdem sedat,Yörükoğlu Abdulkerim Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. , 2022, ss.403 - 410. 10.30728/boron.953341
AMA YILDIRIM C,TURGUT E,sürdem s,Yörükoğlu A Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. . 2022; 403 - 410. 10.30728/boron.953341
Vancouver YILDIRIM C,TURGUT E,sürdem s,Yörükoğlu A Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. . 2022; 403 - 410. 10.30728/boron.953341
IEEE YILDIRIM C,TURGUT E,sürdem s,Yörükoğlu A "Investigating the effect of drawing process parameters on borosilicate glass fiber thickness." , ss.403 - 410, 2022. 10.30728/boron.953341
ISNAD YILDIRIM, CENNET vd. "Investigating the effect of drawing process parameters on borosilicate glass fiber thickness". (2022), 403-410. https://doi.org/10.30728/boron.953341
APA YILDIRIM C, TURGUT E, sürdem s, Yörükoğlu A (2022). Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. BOR DERGİSİ, 7(1), 403 - 410. 10.30728/boron.953341
Chicago YILDIRIM CENNET,TURGUT Eda,sürdem sedat,Yörükoğlu Abdulkerim Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. BOR DERGİSİ 7, no.1 (2022): 403 - 410. 10.30728/boron.953341
MLA YILDIRIM CENNET,TURGUT Eda,sürdem sedat,Yörükoğlu Abdulkerim Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. BOR DERGİSİ, vol.7, no.1, 2022, ss.403 - 410. 10.30728/boron.953341
AMA YILDIRIM C,TURGUT E,sürdem s,Yörükoğlu A Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. BOR DERGİSİ. 2022; 7(1): 403 - 410. 10.30728/boron.953341
Vancouver YILDIRIM C,TURGUT E,sürdem s,Yörükoğlu A Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. BOR DERGİSİ. 2022; 7(1): 403 - 410. 10.30728/boron.953341
IEEE YILDIRIM C,TURGUT E,sürdem s,Yörükoğlu A "Investigating the effect of drawing process parameters on borosilicate glass fiber thickness." BOR DERGİSİ, 7, ss.403 - 410, 2022. 10.30728/boron.953341
ISNAD YILDIRIM, CENNET vd. "Investigating the effect of drawing process parameters on borosilicate glass fiber thickness". BOR DERGİSİ 7/1 (2022), 403-410. https://doi.org/10.30728/boron.953341