4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi

Yıl: 2022 Cilt: 7 Sayı: 1 Sayfa Aralığı: 430 - 437 Metin Dili: Türkçe DOI: 10.30728/boron.1057322 İndeks Tarihi: 19-09-2022

4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi

Öz:
Bor ürünleri sağlık alanında uzun yıllardır kullanılmaktadır. Medikal anlamda ilk kez kanser tedavisinde kullanılan bor ürünleri yıllar içinde kardiyovasküler sağlık, kemik sağlığı, yara iyileşmesi ve immün sistem üzerine olan olumlu etkileri sebebiyle medikal tedavilerde yerini almıştır. Boronik asitler ise son zamanlarda medikal araştırmalarda oldukça popüler olarak incelenen bir bor bileşeni grubudur. Boronik asitler 100 yıldan daha uzun bir süredir sahip oldukları anti mikrobiyal etki ile biliniyorlardı. Ancak son zamanlarda yapılan çalışmalar boronik asitlerin sadece antimikrobiyal etkiye değil aynı zamanda anti enflamatuvar etkiye sahip olduklarını göstermiştir. Bu etkileriyle birçok enflamatuvar hastalıkta kullanılabilirler. Karaciğer hasarı da enflamasyonun görüldüğü hastalıklardan biridir. Son yıllarda, kanser, kemoterapiler, antiviral ilaçların kullanımı, artan hepatik steatoz ve yanlış bitkisel takviyelerin kullanımı sebebiyle karaciğer hasarı insidansı artmıştır. Bu sebeple karaciğer hasarının tedavi edilmesi günümüzde artık daha büyük önem arz etmektedir. Bu calışmada bir boronik asit türevi olan 4-hidroksi fenilboronik asidin lipopolisakkarit (LPS) ile indüklenmiş karaciğer hasarındaki rolü incelenmiştir. Sonuçlara bakıldığında 4 hidroksi fenilboronik asit tedavisinin artmış olan sitokin seviyelerini düşürdüğünü gözlemlenmiştir. Bu sonuçlara dayanarak 4-hidroksi fenilboronik asidin karaciğer hasarını tedavi etme potansiyeline sahip bir ajan olabileceği gösterilmiştir.
Anahtar Kelime: 4-hidroksi fenilboronik asit Bor BRL 3A LPS Karaciğer hasarı

Investigation of possible protective effects of 4-hydroxy phenylboronic acid on lipopolysaccharide-induced liver injury

Öz:
Boron products have been used in the field of health for many years. Boron products, which were used in the treatment of cancer for the first time in the medical field, have taken their place in medical treatments over the years due to their positive effects on cardiovascular health, bone health, wound healing and immune system. Boronic acids are a group of boron compounds that have recently been studied very popularly in medical research. Boronic acids have been known for their anti-microbial effect for more than 100 years. However, recent studies have shown that boronic acids have not only an antimicrobial effect, but also a strong anti-inflammatory effect. With these effects, they can be used in many inflammatory diseases. Liver injury is one of the diseases in which inflammation is seen. In recent years, the incidence of liver injury have increased extremely due to cancer, chemotherapies, use of antiviral drugs, increased hepatic steatosis and the use of wrong herbal supplements. For this reason, the treatment of liver damage is of greater importance today. In this study, the role of 4-hydroxy phenylboronic acid, a derivative of boronic acid, in lipopolysaccharide (LPS)-induced liver injury was examined. Looking at the results, it was observed that the 4-hydroxy phenylboronic acid treatment reduces the increased cytokine levels. Based on these results, it was shown that 4-hydroxy phenylboronic acid can be an agent with potential to treat liver injury.
Anahtar Kelime: 4-hydroxy phenylboronic acid BRL 3A Boron LPS Liver injury

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Merian, E. (2004). Nonmetals, Particular Aspects. Wiley- VCH, ISBN: 3-527-30459-2.
  • [2] Axtell, J. C., Saleh, L. M., Qian, E. A., Wixtrom, A. I., & Spokoyny, A. M. (2018). Synthesis and applications of perfunctionalized boron clusters. Inorganic Chemistry, 57(5), 2333-2350.
  • [3] lli, A. R. and F. M. Hawthorne,(1960), The isolation of the icosahedral B12H12-2 Ion. Journal of the American Chemical Society. 82(12), 3228-3229.
  • [4] Nielsen, F. H., & Eckhert, C. D. (2020). Boron. Advances in Nutrition, 11(2), 461-462.
  • [5] Marriott, B. P., Birt, D. F., Stallings, V. A., & Yates, A. A. (Eds.). (2020). Present Knowledge in Nutrition: Clinical and Applied Topics in Nutrition. Academic Press.
  • [6] Emsley, J. (2011). Nature's building blocks: an AZ guide to the elements. Oxford University Press.
  • [7] Khaliq, H., Juming, Z., & Ke-Mei, P. (2018). The physi- ological role of boron on health. Biological Trace Element Research, 186(1), 31-51.
  • [8] Doğan, A., Demirci, S., Bayir, Y., Halici, Z., Karakus, E., Aydin, A., ... & Şahin, F. (2014). Boron containing poly- (lactide-co-glycolide)(PLGA) scaffolds for bone tissue engineering. Materials Science and Engineering: C, 44, 246-253.
  • [9] Atila, A., Halici, Z., Cadirci, E., Karakus, E., Palabiyik, S. S., Ay, N., ... & Yilmaz, S. (2016). Study of the boron levels in serum after implantation of different ratios nano- hexagonal boron nitride–hydroxy apatite in rat femurs. Materials Science and Engineering: C, 58, 1082-1089.
  • [10] Yayla, M., Cadirci, E., Halici, Z., Bakan, F., Ay, N., Demirci, S., ... & Sahin, F. (2020). Regenerative ef- fect of resorbable scaffold embedded boron-nitride/hy- droxyapatite nanoparticles in rat parietal bone. Journal of Nanoscience and Nanotechnology, 20(2), 680-691.
  • [11] Demirci, S., Doğan, A., Karakuş, E., Halıcı, Z., Topçu, A., Demirci, E., & Sahin, F. (2015). Boron and polox- amer (F68 and F127) containing hydrogel formulation for burn wound healing. Biological Trace Element Re- search, 168(1), 169-180.
  • [12] Bouchareb, R., Katz, M., Saadallah, N., Sassi, Y., Ali, S., & Lebeche, D. (2020). Boron improves cardiac con- tractility and fibrotic remodeling following myocardial infarction injury. Scientific Reports, 10(1), 1-11.
  • [13] Nielsen, F. H., & Meacham, S. L. (2011). Growing evi- dence for human health benefits of boron. Journal of Evidence-Based Complementary & Alternative Medi- cine, 16(3), 169-180.
  • [14] Einsele, H. (2010). Bortezomib. Small Molecules in On- cology, 173-187.
  • [15] Das, B. C., Thapa, P., Karki, R., Schinke, C., Das, S., Kambhampati, S., ... & Evans, T. (2013). Boron chemi- cals in diagnosis and therapeutics. Future Medicinal Chemistry, 5(6), 653-676.
  • [16] Leśnikowski, Z. J. (2016). Recent developments with boron as a platform for novel drug design. Expert Opin- ion on Drug Discovery, 11(6), 569-578.
  • [17] Barth, R. F., Coderre, J. A., Vicente, M. G. H., & Blue, T. E. (2005). Boron neutron capture therapy of cancer: current status and future prospects. Clinical Cancer Re- search, 11(11), 3987-4002.
  • [18] Hawthorne, M. F. (1998). New horizons for therapy based on the boron neutron capture reaction. Molecular Medicine Today, 4(4), 174-181.
  • [19] Hawthorne, M. F., & Maderna, A. (1999). Applications of Radiolabeled Boron Clusters to the Diagnosis and Treatment of Cancer. Chemical Reviews, 99(12), 3421- 3434.
  • [20] Qian, E. A., Wixtrom, A. I., Axtell, J. C., Saebi, A., Jung, D., Rehak, P., ... & Spokoyny, A. M. (2017). Atomically precise organomimetic cluster nanomolecules as- sembled via perfluoroaryl-thiol SN Ar chemistry. Nature Chemistry, 9(4), 333-340.
  • [21] Hawthorne, M. F. (1993). The role of chemistry in the development of boron neutron capture therapy of can- cer. Angewandte Chemie International Edition in Eng- lish, 32(7), 950-984.
  • [22] Lam, P. Y., Clark, C. G., Saubern, S., Adams, J., Win- ters, M. P., Chan, D. M., & Combs, A. (1998). New aryl/ heteroaryl C-N bond cross-coupling reactions via aryl- boronic acid/cupric acetate arylation. Tetrahedron Let- ters, 39(19), 2941-2944.
  • [23] Miyaura, N., & Suzuki, A. (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical Reviews, 95(7), 2457-2483.
  • [24] Hall, D. G. (2005). Structure, properties, and prepara- tion of boronic acid derivatives. Overview of their reac- tions and applications. Boronic acids: preparation and applications in organic synthesis and medicine, pp. 1-99.
  • [25] Cambre, J. N., & Sumerlin, B. S. (2011). Biomedical ap- plications of boronic acid polymers. Polymer, 52(21), 4631-4643.
  • [26] Kiener, P. A., & Waley, S. G. (1978). Reversible inhibi- tors of penicillinases. Biochemical Journal, 169(1), 197- 204.
  • [27] Ulusoy, S., & Akalın, R. B. (2018). Effects of boronic acids on the production of virulence factors by Pseudo- monas aeruginosa. Journal of Boron, 3(3), 166-173.
  • [28] Yoshimori, M., Shibayama, H., Imadome, K. I., Kawano, F., Ohashi, A., Nishio, M., ... & Arai, A. (2021). Antineo- plastic and anti-inflammatory effects of bortezomib on systemic chronic active EBV infection. Blood Advanc- es, 5(7), 1805-1815.
  • [29] Zhu, M. (2019). Inhibitory effects of bortezomib in a subcutaneous tumor model of H22 mouse hepatocarci- noma cells. Pathology-Research and Practice, 215(6), 152388.
  • [30] Jiang, L., Song, J., Hu, X., Zhang, H., Huang, E., Zhang, Y., ... & Wu, X. (2017). The proteasome inhibitor bort- ezomib inhibits inflammatory response of periodontal ligament cells and ameliorates experimental periodonti- tis in rats. Journal of Periodontology, 88(5), 473-483.
  • [31] Liang, Y., Ma, S., Zhang, Y., Wang, Y., Cheng, Q., Wu, Y., ... & Liu, H. (2014). IL-1β and TLR4 signaling are involved in the aggravated murine acute graft-versus- host disease caused by delayed bortezomib adminis- tration. The Journal of Immunology, 192(3), 1277-1285.
  • [32] Han, S. H., Kim, J. S., Woo, J. H., Jeong, S. J., Shin, J. S., Ahn, Y. S., & Kim, J. M. (2015). The effect of bort- ezomib on expression of inflammatory cytokines and survival in a murine sepsis model induced by cecal liga- tion and puncture. Yonsei Medical Journal, 56(1), 112- 123.
  • [33] Wen, Z., Lei, Z., Yao, L., Jiang, P., Gu, T., Ren, F., ... & Wen, T. (2016). Circulating histones are major me- diators of systemic inflammation and cellular injury in patients with acute liver failure. Cell Death & Disease, 7(9), 2391-2391.
  • [34] Sodeifian, F., Seyedalhosseini, Z. S., Kian, N., Eft- ekhari, M., Najari, S., Mirsaeidi, M., ... & Nasiri, M. J. (2021). Drug-Induced Liver Injury in COVID-19 Pa- tients: A Systematic Review. Frontiers in Medicine, 8, 731436.
  • [35] Abubakar, A. R., Sani, I. H., Godman, B., Kumar, S., Islam, S., Jahan, I., & Haque, M. (2020). Systematic review on the therapeutic options for COVID-19: clini- cal evidence of drug efficacy and implications. Infection and Drug Resistance, 13, 4673-4695.
  • [36] Torre, L. A., Siegel, R. L., Ward, E. M., & Jemal, A. (2016). Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiology and Pre- vention Biomarkers, 25(1), 16-27.
  • [37] Floyd, J., Mirza, I., Sachs, B., & Perry, M. C. (2006, February). Hepatotoxicity of chemotherapy. In Semi- nars in Oncology (Vol. 33, No. 1, pp. 50-67). WB Saun- ders.
  • [38] Caballero, B. (2019). Humans against obesity: Who will win?. Advances in Nutrition, 10(suppl_1), S4-S9.
  • [39] Manna, P., & Jain, S. K. (2015). Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Meta- bolic Syndrome and Related Disorders, 13(10), 423- 444.
  • [40] Hurr, C., Simonyan, H., Morgan, D. A., Rahmouni, K., & Young, C. N. (2019). Liver sympathetic denervation re- verses obesity-induced hepatic steatosis. The Journal of Physiology, 597(17), 4565-4580.
  • [41] Zhang, X., Jiang, D., Jiang, W., Zhao, M., & Gan, J. (2015). Role of TLR4-Mediated PI3K/AKT/GSK-3β sig- naling pathway in apoptosis of rat hepatocytes. BioMed Research International, 2015, 631326.
  • [42] Guo, X., Qiu, J., & Qian, Y. (2021). 6-Shogaol mitigates sepsis-associated hepatic injury through transcriptional regulation. Nutrients, 13(10), 3427.
  • [43] Azrad, M., Zeineh, N., Weizman, A., Veenman, L., & Gavish, M. (2019). The TSPO ligands 2-Cl-MGV-1, MGV-1, and PK11195 differentially suppress the inflam- matory response of BV-2 microglial cell to LPS. Interna- tional Journal of Molecular Sciences, 20(3), 594.
  • [44] Ayaz, G., Halici, Z., Albayrak, A., Karakus, E., & Cadirci, E. (2017). Evaluation of 5-HT7 receptor trafficking on in vivo and in vitro model of lipopolysaccharide (LPS)- induced inflammatory cell injury in rats and LPS-treated A549 cells. Biochemical Genetics, 55(1), 34-47.
  • [45] Keskin, H., Tavaci, T., Halici, H., Yuksel, T. N., Ozka- raca, M., Bilen, A., ... & Halici, Z. (2021). Early admin- istration of milrinone ameliorates lung and kidney injury during sepsis in juvenile rats. Pediatrics International.
  • [46] BBilen, A., Calik, I., Yayla, M., Dincer, B., Tavaci, T., Cinar, I., ... & Mercantepe, F. (2021). Does daily fasting shielding kidney on hyperglycemia-related inflamma- tory cytokine via TNF-α, NLRP3, TGF-β1 and VCAM-1 mRNA expression. International Journal of Biological Macromolecules, 190, 911-918.
  • [47] Beheshti, F., Hosseini, M., Taheri Sarvtin, M., Kamali, A., & Anaeigoudari, A. (2021). Protective effect of ami- noguanidine against lipopolysaccharide-induced hepa- totoxicity and liver dysfunction in rat. Drug and Chemi- cal Toxicology, 44(2), 215-221.
  • [48] Cinar, I., Yayla, M., Tavaci, T., Toktay, E., Ugan, R. A., Bayram, P., & Halici, H. (2022). In vivo and In vitro car- dioprotective effect of gossypin against isoproterenol- induced myocardial infarction injury. Cardiovascular Toxicology, 22(1), 52-62.
  • [49] Keskin, H., Keskin, F., Tavaci, T., Halici, H., Yuksel, T. N., Ozkaraca, M., ... & Halici, Z. (2021). Neuroprotective ef- fect of roflumilast under cerebral ischaemia/reperfusion injury in juvenile rats through NLRP-mediated inflam- matory response inhibition. Clinical and Experimental Pharmacology and Physiology, 48(8), 1103-1110.
  • [50] Dai, W., Zhan, X., Peng, W., Liu, X., Peng, W., Mei, Q., & Hu, X. (2021). Ficus pandurata hance inhibits ulcer- ative colitis and colitis-associated secondary liver dam- age of mice by enhancing antioxidation activity. Oxida- tive Medicine and Cellular Longevity, 2021, 2617881.
  • [51] Cheng, D., Wu, C., Li, Y., Liu, Y., Mo, J., Fu, L., & Peng, S. (2021). METTL3 inhibition ameliorates liver damage in mouse with hepatitis B virus-associated acute-on- chronic liver failure by regulating miR-146a-5p matura- tion. Biochimica et Biophysica Acta (BBA)-Gene Regu- latory Mechanisms, 194782.
  • [52] Dunn, C., Brunetto, M., Reynolds, G., Christophides, T., Kennedy, P. T., Lampertico, P., ... & Maini, M. K. (2007). Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell–mediated liver damage. The Journal of Experimental Medicine, 204(3), 667-680.
  • [53] Brenner, C., Galluzzi, L., Kepp, O., & Kroemer, G. (2013). Decoding cell death signals in liver inflamma- tion. Journal of Hepatology, 59(3), 583-594.
  • [54] Essani, N. A., Fisher, M. A., & Jaeschke, H. (1997). In- hibition of NF-kappa B activation by dimethyl sulfoxide correlates with suppression of TNF-alpha formation, reduced ICAM-1 gene transcription, and protection against endotoxin-induced liver injury. Shock (Augusta, Ga.), 7(2), 90-96.
  • [55] Teng, C. Y., Lai, Y. L., Huang, H. I., Hsu, W. H., Yang, C. C., & Kuo, W. H. (2012). Tournefortia sarmentosa extract attenuates acetaminophen-induced hepatotox- icity. Pharmaceutical Biology, 50(3), 291-396.
  • [56] Kim, E. A., Kim, S. Y., Ye, B. R., Kim, J., Ko, S. C., Lee, W. W., ... & Heo, S. J. (2018). Anti-inflammatory effect of Apo-9′-fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and zebrafish model. International Immu- nopharmacology, 59, 339-346.
  • [57] Pervin, M., Karim, M. R., Kuramochi, M., Izawa, T., Ku- wamura, M., & Yamate, J. (2018). Macrophage popula- tions and expression of regulatory inflammatory factors in hepatic macrophage-depleted rat livers under lipo- polysaccharide (LPS) treatment. Toxicologic Pathol- ogy, 46(5), 540-552.
  • [58] Yang, R., Yu, H., Chen, J., Zhu, J., Song, C., Zhou, L., ... & Zhang, Q. (2021). Limonin attenuates LPS-induced hepatotoxicity by inhibiting pyroptosis via NLRP3/Gas- dermin D signaling pathway. Journal of Agricultural and Food Chemistry, 69(3), 982-991.
  • [59] Zhang, X., Shang, X., Jin, S., Ma, Z., Wang, H., Na, A. O., ... & Du, J. (2021). Vitamin D ameliorates high-fat- diet-induced hepatic injury via inhibiting pyroptosis and alters gut microbiota in rats. Archives of Biochemistry and Biophysics, 705, 108894.
  • [60] Jiang, W., Sun, R., Wei, H., & Tian, Z. (2005). Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages. Proceedings of the National Academy of Sciences, 102(47), 17077-17082.
  • [61] Olleros, M. L., Vesin, D., Fotio, A. L., Santiago-Ra- ber, M. L., Tauzin, S., Szymkowski, D. E., & Garcia, I. (2010). Soluble TNF, but not membrane TNF, is critical in LPS-induced hepatitis. Journal of Hepatology, 53(6), 1059-1068.
  • [62] Gantner, F., Leist, M., Lohse, A. W., Germann, P. G., & Tiegs, G. (1995). Concanavalin A-induced T-cell-medi- ated hepatic injury in mice: the role of tumor necrosis factor. Hepatology, 21(1), 190-198.
  • [63] Angurana, S. K., Bansal, A., Muralidharan, J., Aggar- wal, R., & Singhi, S. (2021). Cytokine levels in critically ill children with severe sepsis and their relation with the severity of illness and mortality. Journal of Intensive Care Medicine, 36(5), 576-583.
  • [64] Rahim, V. B., Khammar, M. T., Rakhshandeh, H., Samzadeh-Kermani, A., Hosseini, A., & Askari, V. R. (2019). Crocin protects cardiomyocytes against LPS- Induced inflammation. Pharmacological Reports, 71(6), 1228-1234.
  • [65] Kim, J. W., Yun, H., Choi, S. J., Lee, S. H., Park, S., Lim, C. W., ... & Kim, B. (2017). Evaluating the influ- ence of side stream cigarette smoke at an early stage of non-alcoholic steatohepatitis progression in mice. Toxicological Research, 33(1), 31-41.
  • [66] Webster, J. D., & Vucic, D. (2020). The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues. Frontiers in Cell and Developmental Biology, 8, 365.
  • [67] Zimmermann, H. W., Trautwein, C., & Tacke, F. (2012). Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Frontiers in Physiology, 3, 56.
  • [68] Balaha, M., Kandeel, S., & Barakat, W. (2016). Carvedilol suppresses circulating and hepatic IL-6 re- sponsible for hepatocarcinogenesis of chronically dam- aged liver in rats. Toxicology and Applied Pharmacol- ogy, 311, 1-11.
  • [69] Hunter, C. A., & Jones, S. A. (2015). IL-6 as a keystone cytokine in health and disease. Nature Immunology, 16(5), 448-457.
  • [70] McMaster, W. G., Kirabo, A., Madhur, M. S., & Harrison, D. G. (2015). Inflammation, immunity, and hyperten- sive end-organ damage. Circulation Research, 116(6), 1022-1033.
  • [71] NNencioni, A., Schwarzenberg, K., Brauer, K. M., Schmidt, S. M., Ballestrero, A., Grunebach, F., & Bros- sart, P. (2006). Proteasome inhibitor bortezomib modu- lates TLR4-induced dendritic cell activation. Blood, 108(2), 551-558.
  • [72] Maeda, D. Y., Peck, A. M., Schuler, A. D., Quinn, M. T., Kirpotina, L. N., Wicomb, W. N., ... & Zebala, J. A. (2014). Discovery of 2-[5-(4-Fluorophenylcarbamoyl) pyridin-2-ylsulfanylmethyl] phenylboronic acid (SX- 517): noncompetitive boronic acid antagonist of CXCR1 and CXCR2. Journal of Medicinal Chemistry, 57(20), 8378-8397.
  • [73] Cordeiro, N. M., Freitas, R. H., Fraga, C. A., & Fer- nandes, P. D. (2016). Discovery of novel orally active tetrahydro-naphthyl-N-acylhydrazones with in vivo anti- TNF-α effect and remarkable anti-inflammatory proper- ties. PLoS One, 11(5), e0156271. [74] Huang, H. B., Xiao, K., Lu, S., Yang, K. L., Ansari, A. R., Khaliq, H., ... & Peng, K. M. (2015). Increased thymic cell turnover under boron stress may bypass TLR3/4 pathway in African ostrich. PloS One, 10(6), e0129596
APA bayraktutan z (2022). 4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi. , 430 - 437. 10.30728/boron.1057322
Chicago bayraktutan zafer 4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi. (2022): 430 - 437. 10.30728/boron.1057322
MLA bayraktutan zafer 4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi. , 2022, ss.430 - 437. 10.30728/boron.1057322
AMA bayraktutan z 4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi. . 2022; 430 - 437. 10.30728/boron.1057322
Vancouver bayraktutan z 4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi. . 2022; 430 - 437. 10.30728/boron.1057322
IEEE bayraktutan z "4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi." , ss.430 - 437, 2022. 10.30728/boron.1057322
ISNAD bayraktutan, zafer. "4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi". (2022), 430-437. https://doi.org/10.30728/boron.1057322
APA bayraktutan z (2022). 4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi. BOR DERGİSİ, 7(1), 430 - 437. 10.30728/boron.1057322
Chicago bayraktutan zafer 4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi. BOR DERGİSİ 7, no.1 (2022): 430 - 437. 10.30728/boron.1057322
MLA bayraktutan zafer 4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi. BOR DERGİSİ, vol.7, no.1, 2022, ss.430 - 437. 10.30728/boron.1057322
AMA bayraktutan z 4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi. BOR DERGİSİ. 2022; 7(1): 430 - 437. 10.30728/boron.1057322
Vancouver bayraktutan z 4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi. BOR DERGİSİ. 2022; 7(1): 430 - 437. 10.30728/boron.1057322
IEEE bayraktutan z "4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi." BOR DERGİSİ, 7, ss.430 - 437, 2022. 10.30728/boron.1057322
ISNAD bayraktutan, zafer. "4-hidroksi fenilboronik asidin lipopolisakkarit ile indüklenmiş karaciğer hasarı üzerine muhtemel koruyucu etkilerinin incelenmesi". BOR DERGİSİ 7/1 (2022), 430-437. https://doi.org/10.30728/boron.1057322