Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması

Yıl: 2022 Cilt: 10 Sayı: 2 Sayfa Aralığı: 665 - 684 Metin Dili: Türkçe DOI: 10.29130/dubited.865916 İndeks Tarihi: 26-09-2022

Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması

Öz:
Bu derleme çalışması kapsamında yağ, gres ve lipid maddelerinden (YGLM) anaerobik biyoteknoloji ile biyoenerji eldesi, atıksulardaki kaynakları, oluşumları, biyolojik parçalanma özellikleri, anaerobik arıtım mikrobiyolojisi ve uygulamaları incelenmiştir. Etkin YGLM giderimi gerçekleştiren gerçek ölçekli anaerobik proses uygulamalarına ait bilgi ulusal literatürde bulunmamakta ve mevcut uygulamalar kentsel çamur çürütme ile endüstriyel ölçekte atıksulardan kolay ayrışabilir organik madde giderimi ile sınırlı kalmaktadır. Hindistan ve Çin gibi fosil yakıt kaynağı bulunmayan ülkelerde evsel atıksuların da anaerobik arıtıma yönlendirilmesi, bu prosesin uygulama potansiyelinin geniş kapsamını göstermektedir. YGLM evsel ve birçok endüstriyel atıksu/atıkta farklı konsantrasyonlarda bulunurken sonraki biyolojik arıtım performansını korumak için çoğunlukla yağ ayırma ünitelerinde atık olarak atıksulardan ayrılmakta ve depolama sahalarına veya çimento fabrikalarına gönderilerek uzaklaştırılmaktadır. Mevcut durumda aerobik prosesle işletilen ve yüksek maliyetlere yol açan endüstriyel atıksu arıtımında anaerobik prosesin yaygınlaşması ve YGLM’nin enerji kaynağı olarak prosese katılması önemli ekonomik katkı sağlayacaktır. YGLM’nin yüksek metan/enerji eldesine dönüşüm potansiyelinin optimum şekilde açığa çıkması için uygun reaktör tipi seçimi ile organik yükleme hızı (OYH), besleme modu ile inhibisyon önleme gibi özel proses işletim şartları gerekmektedir. Bu çalışma, yenilenebilir enerji kaynağı olarak YGLM’nin anaerobik prosesle değerlendirilmesine yönelik sahada arıtım ile akademik araştırma çalışmalarına katkı sağlaması amacıyla literatürde verilen teorik ve uygulama bilgilerinin derlenmesi ile oluşturulmuştur. YGLM’nin ilk basamak hidroliz reaksiyonunda oluşan ara ürünlerin yüksek sayıda C zincirli ve hidrofobik yapıları nedeniyle anaerobik mikroorganizmalar üzerinde inhibisyon etkisi oluşmakta, biyokütlenin reaktörde flotasyonu ve sonrasında kaçışı ile proses bozulması gerçekleşmektedir. Yapılan ilk arıtım çalışmalarında inhibisyon etkisinin kontrolünde toplam yağ asidi konsantrasyonunun eşik değeri belirlenmiş fakat ilerleyen araştırmalarda farklı yağ asidi türleri için farklı inhibisyon değerleri ve etkileri belirlenmiştir. Ardışık anaerobik reaksiyonlarla yağ asitlerinin oksidasyon hızını ve yönünü etkileyen önemli mikrobiyal reaksiyonlar belirlenmiştir. Kesikli besleme modu, reaktörde biyokütle tutunumu sağlayan düşük OYH, floküler çamur ve mezofilik sıcaklık seviyesi gibi işletim koşulları ile yeterli seyrelme sağlayan reaktör tipleri uygun bulunmuştur. Ayrıca protein içerikli atıklarla çoklu anaerobik çürütmenin avantaj ve potansiyeli belirtilmiştir.
Anahtar Kelime: Yağ Gres Lipid Anaerobik Arıtım Yenilenebilir Enerji Uzun Zincirli Yağ Asitleri İnhibisyon İşletim

A Review on the Anaerobic Treatability of the Waste Oil, Fat, Grease and Lipid Materials and Long Chain Fatty Acids

Öz:
In this study, origins, characteristics, anaerobic treatability studies and applications including related microbiology were reviewed towards the removal and energy gain from fat, oil and grease (FOG) matter and their intermediate products present in the wastewaters. This review was aimed to contribute to the national literature and design of the full-scale applications on efficient conversion of FOG matter in waste and wastewaters to biogas using anaerobic treatment as nationwide applications are mostly limited to industrial wastewaters with biodegradable soluble organic wastes at industrial scale. Operational biogas plants receive mostly organic wastes originating from animal husbandry and agricultural activities at pre-described rates by the manufacturers. Worldwide applications proved the large range of feasibility for anaerobic process from complex wastes to dilute municipal wastewater. FOG is present in many industrial and municipal wastewaters but mostly separated in DAF units and disposed in landfills or cement factories. FOG presents a high potential for energy recovery in the form of methane gas through anaerobic biotechnology. Performance data were presented regarding to optimum operational characteristics and reactor choice for implementation in the field. Specific operational parameters as organic loading rate (OLR), feeding mode and prevention of inhibition are required to achieve the potential due to the first and slow hydrolysis stage and intermediate products which possess high C number and low solubility in water (hydrophobic) inducing low degradability and inhibitory characteristics. Hydrophobic fatty acids get adsorbed on the bacterial cell wall, prevent the transfer of materials essential to cell metabolism and promote the biomass float and getting washed out of the reactor where biomass immobilization is crucially important to overcome the inhibitory effect. Failure of the process is the gradual result disabling longterm operation. First research studies focused on the threshold value for the total fatty acid concentration tolerable before the start of inhibition and then single fatty acid characteristics were investigated. Several activities conducting and promoting beta-oxidation of fatty acids were stated. Sequential feeding, low OLR, biomass immobilization and reactors enabling sufficient dilution were emphasized for optimum conversion of FOG to methane. Additionally, co-digestion with proteinaceous wastes were presented with synergetic advantages.
Anahtar Kelime: Fat Oil Grease Anaerobic Treatment Renewable Energy Long Chain Fatty Acids Inhibition Operation

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] WEF, Industrial Wastewater Management, Treatment, and Disposal, 3rd edition, Alexandria, 2008.
  • [2] Metcalf and Eddy, Wastewater Engineering: Treatment, Disposal and Reuse, 4th edition, New York, 2003.
  • [3] L. Appels, J. Lauwers, J. Degrève, L. Helsen, B. Lievens, K.Willems, J. Van Impe and R. Dewil, “Anaerobic digestion in global bio-energy production: potential and research challenges,” Renew Sustain Energy Rev, c.15, ss. 4295–4301, 2011, doi: 10.1016/j.rser.2011.07.121.
  • [4] C. M. Braguglia, A. Gallipoli, A. Gianico, P. Pagliaccia. “Anaerobic bioconversion of food waste into energy: A critical review,” Bioresour Technol, c. 248, ss. 37–56, 2018, doi: 10.1016/j.biortech.2017.06.145.
  • [5] İ. Öztürk. Anaerobik arıtma ve uygulamaları, Su Vakfı Yayınları, İstanbul, 2007.
  • [6] D. Erdirencelebi and M. Kucukhemek, “Diagnosis of the anaerobic reject water effects on WWTP operational characteristics as a precursor of bulking and foaming,” Water Sci Technol, c. 71, s. 4, ss. 572-579, 2015, doi: 10.2166/wst.2014.528.
  • [7] L. D. Nghiem, K. Koch, D. Bolzonella and J. E. Drewes, “Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities,” Renew Sustain Energy Rev, c.72, ss. 354–362, 2017, doi: 10.1016/j.rser.2017.01.062.
  • [8] D. Erdirençelebi and C. Bayhan, ” Feasibility and potential of separate anaerobic digestion of municipal sewage sludge fractions,” Water SA, c. 46, s. 1, ss. 123-130, 2020, doi: 10.17159/wsa/2020.v46.i1.7892.
  • [9] M. M. Alves, M. A. Pereira, D. Z. Souza, A. J. Cavaleiro, P. Merjin, H. Smidt and A. J. M. Stams, “Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA),” Microbial Biotechnol, c. 2, s. 5, ss. 538-550, 2009, doi: 10.1111/j.1751-7915.2009.00100.x.
  • [10] D. Erdirencelebi and S. Koyuncu, “Optimization of Biological Nitrogen Removalover Nitrite in the Presence of Lipid Matter by Regulation of Operational Modes,” J Env Eng, c. 144, s. 2, ss. 40170991-40170999, 2018, doi: 10.1061/(ASCE)EE.1943-7870.0001317.
  • [11] S.-H. Kim, S.-K. Han and H.-S. Shin, “Two-phase anaerobic treatment system for fat-containing wastewater,” J Chem Technol Biotechnol, c. 79, ss. 63–71, 2004b, doi: 10.1002/jctb.939.
  • [12] S. Sayed, J. van der Zanden, R. Wijffels and G. Lettinga, “Anaerobic degradation of the various fractions of slaughterhouse waste-water,” Biological Waste, c. 323, ss. 117–142, 1988, doi: 10.1016/0269-7483(88)90069-9.
  • [13] Y. Saatci, E. I. Arslan and V. Konar, “Removal of total lipids and fatty acids from sunflower oil factory effluent by UASB reactor,” Bioresour Technol, c. 87, ss. 269–272, 2003, doi: 10.1016/S0960-8524(02)00255-9.
  • [14] M. Beccari, M. Majone and L. Torrisi, “Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents,” Water Sci Technol, c. 38, ss. 53–60, 1998, doi: 10.1016/S0273-1223(98)00497-1.
  • [15] P. Becker, D. Koster, M.N. Popov, S. Markossian, G. Antranikian and H. Markl, “The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions,” Water Res, c. 33, ss. 653–660, 1999, doi: 10.1016/S0043-1354(98)00253-X.
  • [16] M. Quémeneur and Y. Marty, “Fatty-acids and sterols in domestic wastewaters,” Water Res, c. 28, ss. 1217–1226, 1994, doi: 10.1016/0043-1354(94)90210-0.
  • [17] S.-H. Kim, S.-K. Han and H.-S. Shin, “Kinetics of LCFA Inhibition on Acetoclastic Methanogenesis, Propionate Degradation and -Oxidation,” J Env Sci Health, Part A, c. A39, s. 4, ss. 1025–1037, 2004a, doi: 10.1081/ESE-120028411.
  • [18] J. A. Lalman and D. M. Bagley, “Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids,” Water Res, c. 35, s. 12, ss. 2975–83, 2001, doi: 10.1016/S0043-1354(00)00593-5.
  • [19] J.-C. Frigon, R. H. Abdou, P. J. McGinn, S. J. B. O'Leary and S. R. Guiot, “Fate of palmitic, palmitoleic and eicosapentaenoic acids during anaerobic digestion of Phaeodactylum tricornutum at varying lipid concentration, “ Algal Res, c. 6, ss. 46–51, 2014, doi: 10.1016/j.algal.2014.08.011.
  • [20] D. Z. Sousa, H. Smidt, M. M. Alves and A. J. M. Stams, “Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids,” FEMS Microbiol Ecol, c. 68, ss. 257−272, 2009, doi: 10.1111/j.1574-6941.2009.00680.x.
  • [21] B. E. Rittmann and P. L. McCarty, Environmental Biotechnology: Principles and Applications, McGraw-Hill Book Co, Singapore, 2001.
  • [22] C. B. D. Cavinato, P. Pavan, F. Fatone and F. Cecchi, ”Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors,” Renew Energy, c. 55, ss. 260–265, 2013, doi: 10.1016/j.renene.2012.12.044.
  • [23] S. Astals, D. J. Batstone, J. Mata-Alvarez and P. D. Jensen, “Identification of synergistic impacts during anaerobic co-digestion of organic wastes,” Bioresour Technol, c. 169, ss. 421–427, 2014, doi: 10.1016/j.biortech.2014.07.024.
  • [24] I. Angelidaki and B. K. Ahring, “Effects of free long-chains fatty acids on thermophilic anaerobic digestion,” Appl Microbiol Biotechnol, c. 37, ss. 808–812, 1992, doi: 10.1007/BF00174850.
  • [25] M. Kim, Y.H. Ahn and R. E. Speece, “Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic,” Water Res, c. 36, ss. 4369–4385, 2002, doi: 10.1016/S0043-1354(02)00147-1.
  • [26] J. Palatsi, M. Laureni, M. V. Andrés, X. Flotats, H. B. Nielsen and I. Angelidaki, “Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors,” Bioresour Technol, c. 100, ss. 4588–4596, 2009, doi: 10.1016/j.biortech.2009.04.046.
  • [27] Y. Z. Chia, Y.Y. Li, M. Ji, H. Qiang, H. W. Deng and Y. P. Wu, “Mesophilic and Thermophilic Digestion of Thickened Waste Activated Sludge: A Comparative Study,” Adv Material Res, c. 113, ss. 450–458, 2010, doi: 10.4028/www.scientific.net/AMR.113-116.450.
  • [28] R. H. Abeles, P. A. Frey, W. P. Jencks. Biochemistry, Jones and Bartlett Publishers, Boston, 1992.
  • [29] D. Z. Sousa, M. A. Pereira, A. J. M. Stams and M. M. Alves, “Microbial communities involved in anaerobic degradation of unsaturated or saturated long chain fatty acids (LCFA),” Appl Env Microbiol, c. 73, s. 4, ss. 1054-1064, 2007, doi: 10.1128/AEM.01723-06.
  • [30] R. E. Speece, Anaerobic Biotechnology for Industrial Wastewaters, Archae Press, Nashville, 1996.
  • [31] M. Pereira, A. Cavaleiro, M. Mota and M. Alves, “Accumulation of long chain fatty acids onto anaerobic sludge under steady state and shock loading conditions: effect on acetogenic and methanogenic activity,” Water Sci Technol, c. 48, s. 6, ss. 33–40, 2003.
  • [32] S.T. Oh and A.D. Martin, “Long chain fatty acids degradation in anaerobic digester: Thermodynamic equilibrium consideration,” Process Biochem, c. 45, ss. 335–345, 2010, doi:10.1016/j.procbio.2009.10.006.
  • [33] J. C. Kabouris, U. Tezel, S. G. Pavlostathis, M. Engelmann, J. Dulanay, R. Gillette and A. C.Tood, “Methane recovery from the anaerobic co-digestion of municipal sludge and FOG,” Bioresour Technol, c. 100, ss. 3701–3705, 2009, doi: 10.1016/j.biortech.2009.02.024.
  • [34] G. J. Silvestre, B. Fernandez and A. Bonmati, “Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties,” Appl Energy, c. 117, ss. 87-94, 2014, doi: 10.1016/j.apenergy.2013.11.075.
  • [35] A. Rinzema, M. Boone, K.V. Knippenberg and G. Lettinga, “Bactericidal effect of long chain fatty acids in anaerobic digestion,” Water Environ Res, c. 66, s. 1, ss. 40–49, 1994, doi: 10.2175/WER.66.1.7.
  • [36] H. Galbraith and T. B. Miller,“Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids,” J Appl Bacteriol, c. 36, ss. 635-646, 1973a.
  • [37] H. Galbraith and T. B. Miller, “Physicochemical effetcs of long chain fatty acids on bacterial cells and their protoplasts,” J Appl Bacteriol, c. 36, ss. 647-658, 1973b.
  • [38] M. M. Alves, J. A. Mota Vieira, R. M. Álvares Pereira, M. A. Pereira and M. Mota, “Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: oleic acid toxicity and biodegradability,” Water Res, c. 35, s. 1, ss. 264–270, 2001, doi: 10.1016/S0043-1354(00)00242-6.
  • [39] C. J. Zheng, J.-S.Yoo, T.-G. Lee, H.-Y. Cho, Y.-H. Kim and W.-G. Kim, “Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids,” FEBS Letters, c. 579, s. 23, ss. 5157–5162, 2005, doi: 10.1016/j.febslet.2005.08.028.
  • [40] A. Desbois and V. Smith, “Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential,” Appl Microbiol Biotechnol, c. 85, s. 6, ss. 1629–1642, 2010, doi: 10.1007/s00253-009-2355-3.
  • [41] M. A. Pereira, D. Z. Sousa, M. Mota and M.M. Alves, “Mineralization of LCFA Associated With Anaerobic Sludge: Kinetics, Enhancement of Methanogenic Activity, and Effect of VFA,” Biotechnol Bioeng, c. 88, s. 4, ss. 502-511, 2004, doi: 10.1002/bit.20278.
  • [42] M. A. Pereira, O. C. Pires, M. Mota and M. M. Alves, “Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge,” Biotechnol Bioeng, c. 92, s. 1, ss. 15–23, 2005, doi: 10.1002/bit.20548.
  • [43] F. Roy, E. Samain, H. Dubourguier and C. Albagnac, “Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids,” Arch Microbiol, c. 145, ss. 142-147, 1986, doi: 10.1007/BF00446771.
  • [44] I. W. Koster and A. Cramer, “Inhibition of methanogenesis from acetate in granular sludge by long chain fatty acids,” Appl Environ Microbiol, c. 53, s. 2, ss. 403–409, 1987.
  • [45] C. S. Hwu, B. Donlon and G. Lettinga, Comparative toxicity of Long-chain fatty acid to anaerobic sludges from various origins. Water Science and Technology 18th Biennial Conference of the International-Association-on-Water-Quality, SINGAPORE JUN 23-28, 1996, 34(5-6) : 351-358, 1996.
  • [46] M. Perle, S. Kimchie and G. Shelef, “Some biochemical aspects of the anaerobic degradation of dairy wastewater,” Water Res, c. 29, ss. 1549-1554, 1995.
  • [47] M. Beccari, F. Bonemazzi, M. Majone and C. Riccardi. “Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents,” Water Res, c. 30, ss. 183-189, 1996.
  • [48] J. T. Yoke III, “The solubility of calcium soaps,” J Phys Chem, c. 62, s. 6, ss. 753–755, 1958. doi.org/10.1021/j150564a030.
  • [49] M. A. Pereira, O. C. Pires, M. Mota and M. M. Alves, “Anaerobic degradation of oleic acid by suspended sludge: identification of palmitic acid as a key intermediate,“ Water Sci Technol, c. 45, s. 10, ss. 139-144, WOS:000177331900022.
  • [50] J. Lalman and D. M. Bagley, “Effects of C18 long chain fatty acids on glucose, butyrate and hydrogen degradation,” Water Res, c. 36, s. 13, ss. 3307–3313, 2002, doi: 10.1016/S0043-1354(02)00014-3.
  • [51] R. A. Labatut, L. T. Angenent and N. R. Scott, ”Conventional mesophilic vs. thermophilic anaerobic digestion: A trade-off between performance and stability?” Water Res, c. 53, ss. 249-258, 2014, doi: 10.1016/j.watres.2014.01.035.
  • [52] M. Asther and G. Corrieu, “Effect of Tween 80 and oleic acid on ligninase production by Phanerochaete chrysosporium INA-12,” Enz Microbiol Technol, c. 9, ss. 245-249, 1987, doi: 10.1016/0141-0229(87)90024-X.
  • [53] M. A. Lewis, “The effects of mixtures and other environmental modifying factors on the toxicities of surfactants to freshwater and marine life,” Water Res, c. 26, ss. 1013-1023, 1992, doi: 10.1016/0043-1354(92)90136-R.
  • [54] E. Thies, T. Jenkins and F. Stutzenberger, “Effects of the detergent Tween 80 on Thermomonospora curvata,” World J Microbiol Biotechnol, c. 10, ss. 657-663, 1994, doi: 10.1007/BF00327954.
  • [55] C. S. Hwu and G. Lettinga, “Acute toxicity of oleate to acetate-utilizing methanogens in mesophilic and thermophilic anaerobic sludges,” Enz Microbiol Technol, c. 21, ss. 297–301, 1997, doi: 10.1016/S0141-0229(97)00050-1.
  • [56] P. Sam-soon, R. E. Loewenthal, M. C. Wentzel and G. V. R. Marais, “A long-chain fatty acid, oleate, as sole substrate in upflow anaerobic sludge bed (UASB) reactor systems,” Water SA, c. 17, ss. 31–36, 1991, WOS:A1991EX51600004.
  • [57] A. Rinzema, A. Alphenaar and G. Lettinga, “Anaerobic digestion of long-chain fatty acids in UASB and expanded granular sludge bed reactors,” Proc Biochem, c. 28, s. 8, ss. 527–537, 1993, doi: 10.1016/0032-9592(93)85014-7.
  • [58] F. R. Hawkes, T. Donnelly and G. K. Anderson, “Comparative performance of anaerobic digesters operating on ice-cream wastewater,” Water Res, c. 29, ss. 525–533, 1995, doi: 10.1016/0043-1354(94)00163-2.
  • [59] A. J. Cavaleiro, M. A. Pereira, A. P. Guedes, A. J. M. Stams, M. M. Alves and D. Z. Sousa, “Conversion of Cn Unsaturated into Cn 2-Saturated LCFA Can Occur Uncoupled from Methanogenesis in Anaerobic Bioreactors,” Environ Sci Technol, c. 50, ss. 3082−3090, 2016, doi: 10.1021/acs.est.5b03204.
  • [60] D. J. Batstone, J. Keller, R. B. Newell and M. Newland, “Modelling anaerobic degradation of complex wastewater. I: model development,” Bioresour Technol, c. 75, ss. 67-74 2000, doi: 10.1016/S0960-8524(00)00018-3.
  • [61] H. Yu, X. Zheng, Z. Hu and G. Gu, “High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor,” Water Sci Technol, c. 48, s. 4, ss. 69-75, 2003, WOS:000185983700011.
  • [62] T. Komatsu, K. Hanaki and T. Matsuo, “Prevention of lipid inhibition in anaerobic processes by introducing a two-phase system,” Water Sci Technol, c. 23, ss. 1189–1200, 1991, WOS:A1991EN77400006.
  • [63] K. Hanaki, T. Matsuo and M. Nagase, “Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process,” Biotechnol Bioeng, c. 23, s. 7, ss. 1591–1610, 1981, doi: 10.1002/bit.260230717, WOS:A1981LX08900016.
  • [64] J. Palatsi, R. Affes, B. Fernandez, M. A. Pereira, M. M. Alves and X. Flotats. “Influence of adsorption and anaerobic granular sludge characteristics on long chain fatty acids inhibition process,” Water Res, c. 46, ss. 5268-5278, 2012, doi: 10.1016/j.watres.2012.07.008.
  • [65] R. M. Dinsdale, F. R. Hawkes and D. L. Hawkes, “The mesophilic and thermophilic anaerobic digestion of coffee waste containing coffee grounds,” Water Res, c. 30, ss. 371–377, 1996, doi: 10.1016/0043-1354(95)00157-3.
  • [66] A. J. Cavaleiro, A. F. Salvador, J. I. Alves and M. M. Alves, “Continuous high rate anaerobic treatment of oleic acid based wastewater is possible after a step feding start-up,” Environ Sci Technology, c. 43, ss. 2931-2936, 2009, doi: 10.1021/es8031264.
  • [67] L.-J. Wu, T. Kobayashi, Y.-Y. Li and K.-Q. Xu. “Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste,” Energy Conver Manag, c. 106, ss. 1174–1182, 2015, doi: 10.1016/j.enconman.2015.10.059.
  • [68] J. Palatsi, J. Illa, F. X. Prenafeta-Boldú, M. Laureni, B. Fernandez, I. Angelidaki and X. Flotats, “Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling,” Bioresour Technol, c. 101, ss. 2243–2251, 2010, doi: 10.1016/j.biortech.2009.11.069.
  • [69] D. Erdirencelebi. “Treatment of high-fat-containing dairy wastewater in a sequential UASBR system: influence of recycle,” J Chem Technol Biotechnol, c. 86, ss.525–533, 2011, doi: 10.1002/jctb.2546.
  • [70] J. Jeganathan, G. Nakhla and A. Bassi, “Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater,” Environ Sci Technol, c. 40, ss. 6466– 6472, 2006, doi: 10.1021/es061071m.
  • [71] Y. Kuang, M. Lepesteur, P. Pullammanappallil and G. E. Ho, “Influence of co-substrates on structure of microbial aggregates in long-chain fatty acid-fed anaerobic digesters,” Lett Appl Microbiol, c. 35, s. 3, ss. 190–194, 2002, doi: 10.1046/j.1472-765X.2002.01163.x.
  • [72] Y. Kuang, P. Pullammanappallil, M. Lepesteur and G. E. Ho, “Recovery of oleate inhibited anaerobic digestion by addition of simple substrates,” J Chem Technol Biotechnol, c. 81, s. 6, ss.1057–1063, 2006, doi: 10.1002/jctb.1530.
  • [73] A. Davidsson, C. Lovstedt, J. L. Jansen, C. Gruvberger and H. Aspegren, “Co-digestion of grease trap sludge and sewage sludge,” Waste Manag, c. 28, s. 6, ss. 986–992, 2008, doi: 10.1016/j.wasman.2007.03.024.
  • [74] S. Luostarinen, S. Luste and M. Sillanpaa, “Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant,” Bioresour Technol, c. 100, s. 1, ss.79–85, 2009, doi: 10.1016/j.biortech.2008.06.029.
  • [75] C. Noutsopoulos, D. Mamais, K. Antoniou, C. Avramides, P. Oikonomopoulos and I. Fountoulakis, “Anaerobic co-digestion of grease sludge and sewage sludge: The effect of organic loading and grease sludge content,” Bioresour Technol, c. 131, ss. 452–459, 2013, doi: 10.1016/j.biortech.2012.12.193.
  • [76] G. Silvestre, A. Rodríguez-Abalde, B. Fernández, X. Flotats and A. Bonmatí, “Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste,” Bioresour Technol, c. 102, ss. 6830–6836, 2011, doi: 10.1016/j.biortech.2011.04.019.
  • [77] Y. J. Shao, H. S. Kim, S. Oh, R. Iranpour and D. Jenkins, “Full-scale sequencing batch thermophilic anaerobic sludge digestion to meet EPA class A biosolids requirements,” Proceedings of the 75th Annual Conference and Exposition, WEFTEC 2002, Chicago, Ill., USA, September 28-October 2, 2002, pp. 573–591, ISSN 1938-6478, doi: 10.2175/193864702784248511.
  • [78] S. Krugel, K. Hamel and B. K. Ahring, “North America's first new temperature phased anaerobic digestion system – a successful start-up at the western lake superior sanitary district (WLSSD),” Proceedings of the 75th Annual Conference and Exposition, WEFTEC 2002, Chicago, Ill., USA, September 28-October 2, 2002, c. 19, ss. 452-470, ISSN 1938-6478, doi:10.2175/193864702784248511.
  • [79] L. Pastor, L. Ruiz, A. Pascual and B. Ruiz, “Co-digestion used oils and urban landfill leachates with sewage sludge and the effect on the biogas production,” Appl Energy, c. 93, ss. 438–45, 2013, doi: 10.1016/j.apenergy.2013.02.055.
  • [80] M. M. Alves, M. A. Picavet, M.A. Pereira, A. J. Cavaleiro and D. Z. Sousa, “Novel anaerobic reactor for the removal of long chain fatty acids from fat containing wastewater,” 2007, WO 2007058557, https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2007058557.
APA Erdirencelebi D (2022). Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması. , 665 - 684. 10.29130/dubited.865916
Chicago Erdirencelebi Dilek Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması. (2022): 665 - 684. 10.29130/dubited.865916
MLA Erdirencelebi Dilek Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması. , 2022, ss.665 - 684. 10.29130/dubited.865916
AMA Erdirencelebi D Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması. . 2022; 665 - 684. 10.29130/dubited.865916
Vancouver Erdirencelebi D Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması. . 2022; 665 - 684. 10.29130/dubited.865916
IEEE Erdirencelebi D "Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması." , ss.665 - 684, 2022. 10.29130/dubited.865916
ISNAD Erdirencelebi, Dilek. "Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması". (2022), 665-684. https://doi.org/10.29130/dubited.865916
APA Erdirencelebi D (2022). Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(2), 665 - 684. 10.29130/dubited.865916
Chicago Erdirencelebi Dilek Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10, no.2 (2022): 665 - 684. 10.29130/dubited.865916
MLA Erdirencelebi Dilek Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol.10, no.2, 2022, ss.665 - 684. 10.29130/dubited.865916
AMA Erdirencelebi D Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2022; 10(2): 665 - 684. 10.29130/dubited.865916
Vancouver Erdirencelebi D Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2022; 10(2): 665 - 684. 10.29130/dubited.865916
IEEE Erdirencelebi D "Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması." Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10, ss.665 - 684, 2022. 10.29130/dubited.865916
ISNAD Erdirencelebi, Dilek. "Atık Yağ, Gres ve Lipid Maddeleri ile Uzun Zincirli Yağ Asitlerinin Anaerobik Prosesle Arıtılabilirliği Üzerine Derleme Çalışması". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/2 (2022), 665-684. https://doi.org/10.29130/dubited.865916