Yıl: 2021 Cilt: 33 Sayı: 2 Sayfa Aralığı: 431 - 440 Metin Dili: Türkçe DOI: 10.35234/fumbd.861115 İndeks Tarihi: 27-09-2022

PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı

Öz:
Canlı kemik ve implant arasındaki doğrudan bağ oluşumu olarak tanımlanan osseointegrasyonu iyileştirme ve malzeme üzerinde bakteri oluşumunu azaltma üzerine yapılan araştırmalar bilim dünyasının en güncel çalışmalarındandır. Osseointegrasyonu artırmada en çok kullanılan yöntemlerden biri hidroksiapatit kaplamalarken, bakteri oluşumunu azaltmada kullanılan yöntemler çeşitlilik göstermektedir. Bu yöntemlerden biri de antibakteriyel olduğu bilinen bakır oksitin hidroksiapatit içerisine gömüldüğü kaplamalardır. Bu çalışmada, 316L paslanmaz çelik yüzey üzerine darbeli lazer biriktirme (PLD) işlemi uygulanarak yüzeyde bakır içerikli hidroksiapatit ince film tabakası (HA/CuO) oluşturulmuştur. Kaplama işlemi sonrası işlemsiz ve kaplanmış numunelerin fosfat tamponlu tuz çözeltisi (PBS) ve yapay vücut sıvısı (SBF) içerisinde korozyon davranışları ve kuru ortam aşınma davranışları karşılaştırılmıştır. Yapısal karakterizasyonları taramalı elektron mikroskopu (SEM), X ışını kırınım cihazı (XRD) ve 3D profilometre kullanılarak gerçekleştirilmiştir.
Anahtar Kelime: PLD 316L Hidroksiapatit CuO Korozyon

Wear and Corrosion Behaviour of Copper Oxide Doped Hydroxyapatite Thin Film Layer Coated by PLD

Öz:
Researches on improving osseointegration which is defined as a direct bond formation between living bone and implant and reducing bacterial growth on the material, are still among the studies that engage scientists’ attention. While hydroxyapatite coating is one of the most widely used approaches to increase osseointegration, methods used to reduce bacterial growth vary. One of these methods is to form a copper-doped hydroxyapatite layer on the implant, which is known to be antibacterial. In this study, a copper oxide-containing hydroxyapatite thin film layer (HA/CuO) was formed on the surface of 316L stainless steel by using pulsed laser deposition (PLD). Dry sliding wear behaviour and corrosion behaviour of untreated and coated samples were comparatively investigated in phosphate buffer saline (PBS) and simulated body fluid (SBF) after coating. Structural characterizations were examined with scanning electron microscope (SEM), X-ray diffraction (XRD) and 3D profilometer.
Anahtar Kelime: PLD 316L Hydroxyapatite CuO Corrosion

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Mina A, Castaño A, Caicedo JC, Caicedo HH, Aguilar Y. Determination of physical properties for β-TCP + chitosan biomaterial obtained on metallic 316L substrates. Mater Chem Phys. 2015; 160: 296–307.
  • [2] Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials Science. 3rd ed. Oxford, UK: Academic Press, 2013.
  • [3] Jung H Do, Jang TS, Wang L, Kim HE, Koh YH, Song J. Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials. 2015; 37: 49–61.
  • [4] Pecheva E, Pramatarova L, Fingarova D, Hikov T, Dineva I, Karagyozova Z, et al. Advanced materials for metal implant coatings. J Optoelectron Adv Mater. 2009; 11(9): 1323–6.
  • [5] Yuan Y, Jin S, Qi X, Chen X, Zhang W, Yang K, et al. Osteogenesis stimulation by copper-containing 316L stainless steel via activation of akt cell signaling pathway and Runx2 upregulation. J Mater Sci Technol. 2019; 35(11): 2727– 33.
  • [6] Chen Q, Thouas G. Biomaterials: A basic introduction. Biomaterials: A Basic Introduction. Boca Raton, FL, USA: CRC Press, 2014. 1–693 p.
  • [7] Katta PPK, Nalliyan R. Corrosion resistance with self-healing behavior and biocompatibility of Ce incorporated niobium oxide coated 316L SS for orthopedic applications. Surf Coatings Technol. 2019; 375: 715–26.
  • [8] Kondyurina I, Kondyurin A. Foreign body reaction (immune respond) for artificial implants can be avoided. arXiv. 2019.
  • [9] Silva G, Baldissera MR, De Sousa Trichês E, Cardoso KR. Preparation and characterization of stainless steel 316L/HA biocomposite. Mater Res. 2013; 16(2): 304–9.
  • [10] Liu F, Wang F, Shimizu T, Igarashi K, Zhao L. Hydroxyapatite formation on oxide films containing Ca and P by hydrothermal treatment. Ceram Int. 2006; 32(5): 527–31.
  • [11] García-Sanz FJ, Mayor MB, Arias JL, Pou J, León B, Pérez-Amor M. Hydroxyapatite coatings: A comparative study between plasma-spray and pulsed laser deposition techniques. In: Journal of Materials Science: Materials in Medicine. Chapman & Hall Ltd, 1997. pp. 861–5.
  • [12] Larsson A, Andersson M, Wigren S, Pivodic A, Flynn M, Nannmark U. Soft Tissue Integration of Hydroxyapatite- Coated Abutments for Bone Conduction Implants. Clin Implant Dent Relat Res . 2015; 17: e730–5.
  • [13] Wang DG, Chen CZ, Yang XX, Ming XC, Zhang WL. Effect of bioglass addition on the properties of HA/BG composite films fabricated by pulsed laser deposition. Ceram Int. 2018; 44(12): 14528–33.
  • [14] Ke D, Vu AA, Bandyopadhyay A, Bose S. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater. 2019; 84: 414–23.
  • [15] Liu X, He D, Zhou Z, Wang G, Wang Z, Guo X. Effect of post-heat treatment on the microstructure of micro-plasma sprayed hydroxyapatite coatings. Surf Coatings Technol. 2019; 367: 225–30.
  • [16] Rodríguez JP, Ríos S, González M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem. 2002; 85(1): 92–100.
  • [17] Gérard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010; 31(5): 824–31.
  • [18] Zhang D, Ren L, Zhang Y, Xue N, Yang K, Zhong M. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel. Colloids Surfaces B Biointerfaces. 2013; 105: 51–7.
  • [19] Chai H, Guo L, Wang X, Fu Y, Guan J, Tan L, et al. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. J Mater Sci Mater Med. 2011; 22(11): 2525–35.
  • [20] Noyce JO, Michels H, Keevil CW. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect. 2006; 63(3): 289–97.
  • [21] Wilks SA, Michels H, Keevil CW. The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol. 2005; 105(3): 445–54.
  • [22] Faúndez G, Troncoso M, Navarrete P, Figueroa G. Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 2004; 4(1): 1–7.
  • [23] Mehtar S, Wiid I, Todorov SD. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J Hosp Infect. 2008; 68(1): 45–51.
  • [24] Ren L, Wong HM, Yan CH, Yeung KWK, Yang K. Osteogenic ability of Cu-bearing stainless steel. J Biomed Mater Res - Part B Appl Biomater. 2015; 103(7): 1433–44.
  • [25] Hidalgo-Robatto BM, López-Álvarez M, Azevedo AS, Dorado J, Serra J, Azevedo NF, et al. Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications. Surf Coatings Technol. 2018; 333: 168–77.
  • [26] Duta L, Popescu A. Current Status on Pulsed Laser Deposition of Coatings from Animal-Origin Calcium Phosphate Sources. Coatings. 2019; 9(5): 335.
  • [27] Voevodin AA, Zabinski JS, Jones JG. Pulsed Laser Deposition of Tribological Coatings. In: Eason R, editor. Pulsed Laser Deposition of Thin Films. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. pp. 585–609.
  • [28] Ekmekçi S, Yurtcan MT. Darbeli Lazer Biriktirme (PLD) ile Ti-6Al-4V Üzerine Hidroksiapatitin (HAp) İnce Filmlerinin Hazırlanması. Ömer Halisdemir Üniversitesi Mühendislik Bilim Derg. 2020; 9(1): 598–605.
  • [29] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006; 27(15):2907–15.
  • [30] Wahid Rajih A, Mohammed Dawood N, Sami Rasheed F, SamiRasheed F. Wear resistance of pulsed laser deposition of hydroxyapatite on Stainless Steel 316L. Adv Nat Appl Sci. 1998; 11(14): 28–38.
  • [31] Sridhar TM, Kamachi Mudali U, Subbaiyan M. Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel. Corros Sci. 2003; 45(2): 237–52.
  • [32] Thanh DTM, Nam PT, Phuong NT, Que LX, Anh N Van, Hoang T, et al. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel. Mater Sci Eng C. 2013; 33(4): 2037– 45.
  • [33] Zhu D, Wang L, Yu W, Xie H. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci Rep. 2018; 8(1): 1–12.
  • [34] Mevada Bina Sengupta Research Scholar Associate Professor C. Effect of Temperature and Precursor Concentration on Morphology of Copper Oxide Synthesized on Glass Substrates Via Hydrothermal Method. Vol. 3, IJSTE- International Journal of Science Technology & Engineering |. 2017 May.
  • [35] Ruiz-Aguilar C, Olivares-Pinto U, Aguilar-Reyes EA, López-Juárez R, Alfonso I. Characterization of β-tricalcium phosphate powders synthesized by sol-gel and mechanosynthesis. Bol la Soc Esp Ceram y Vidr. 2018; 57(5): 213– 20.
  • [36] Topsakal A, Ekren N, Kilic O, Oktar FN, Mahirogullari M, Ozkan O, et al. Synthesis and characterization of antibacterial drug loaded β-tricalcium phosphate powders for bone engineering applications. J Mater Sci Mater Med. 2020; 31(2): 1–17.
  • [37] Surmeneva MA, Surmenev RA. Microstructure characterization and corrosion behaviour of a nano-hydroxyapatite coating deposited on AZ31 magnesium alloy using radio frequency magnetron sputtering. Vacuum. 2015; 117: 60– 2.
  • [38] Liu YD, Sun J, Pei ZL, Li W, Liu JH, Gong J, et al. Oxidation and hot corrosion behavior of NiCrAlYSi+NiAl/cBN abrasive coating. Corros Sci. 2020; 167.
  • [39] Mengesha GA, Chu JP, Lou B-S, Lee J-W. Corrosion performance of plasma electrolytic oxidation grown oxide coating on pure aluminum: effect of borax concentration. J Mater Res Technol. 2020; 9(4): 8766–79.
  • [40] Hu P, Song R, Li X jing, Deng J, Chen Z yu, Li Q wei, et al. Influence of concentrations of chloride ions on electrochemical corrosion behavior of titanium-zirconium-molybdenum alloy. J Alloys Compd. 2017; 708: 367–72.
  • [41] Liang M jie, Wu C, Ma Y, Wang J, Dong M, Dong B, et al. Influences of aggressive ions in human plasma on the corrosion behavior of AZ80 magnesium alloy. Mater Sci Eng C. 2021; 119: 111521.
  • [42] Huang Y, Yang S, Gu J, Xiong Q, Duan C, Meng X, et al. Microstructure and wear properties of selective laser melting 316L. Mater Chem Phys. 2020; 254: 123487.
  • [43] Upadhyay RK, Kumar A. Scratch and wear resistance of additive manufactured 316L stainless steel sample fabricated by laser powder bed fusion technique. Wear. 2020; 458–459: 203437.
  • [44] Kovacı H. Comparison of the microstructural, mechanical and wear properties of plasma oxidized Cp-Ti prepared by laser powder bed fusion additive manufacturing and forging processes. Surf Coatings Technol. 2019; 374: 987– 96.
  • [45] Czupryk W, Grzeszczak A, Pisarek M. Study of CuO admixtures as antiwear additive in Machine Grease – 2. Tribol- Mater Surfaces Interfaces. 2014; 8(3): 154–8.
  • [46] Jatti VS, Singh TP. Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil †. J Mech Sci Technol. 2015; 29(2): 793–8.
  • [47] Kovacı H, Akaltun Y, Yetim AF, Uzun Y, Çelik A. Investigation of the usage possibility of CuO and CuS thin films produced by successive ionic layer adsorption and reaction (SILAR) as solid lubricant. Surf Coatings Technol. 2018;344: 522–7.
  • [48] Peruzzo M, Serafini FL, Ordoñez MFC, Souza RM, Farias MCM. Reciprocating sliding wear of the sintered 316L stainless steel with boron additions. Wear. 2019; 422–423: 108–18.
  • [49] Kazerooni NA, Bahrololoom ME, Shariat MH, Mahzoon F, Jozaghi T. Effect of ringer’s solution on wear and friction of stainless steel 316L after plasma electrolytic nitrocarburising at low voltages. J Mater Sci Technol. 2011; 27(10): 906–12.
  • [50] Farias MCM, Souza RM, Sinatora A, Tanaka DK. The influence of applied load, sliding velocity and martensitic transformation on the unlubricated sliding wear of austenitic stainless steels. Wear. 2007; 263(1-6 SPEC. ISS.): 773–81.
  • [51] Li G jiang, Peng Q, Li C, Wang Y, Gao J, Chen S yuan, et al. Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel. Surf Coatings Technol. 2008; 202(12): 2749– 54.
  • [52] Zeng H, Lacefield WR, Mirov S. Structural and morphological study of pulsed laser deposited calcium phosphate bioceramic coatings: Influence of deposition conditions, laser parameters, and target properties. J Biomed Mater Res.2000; 50(2): 248–58.
APA Vangolu Y (2021). PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı. , 431 - 440. 10.35234/fumbd.861115
Chicago Vangolu Yenal PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı. (2021): 431 - 440. 10.35234/fumbd.861115
MLA Vangolu Yenal PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı. , 2021, ss.431 - 440. 10.35234/fumbd.861115
AMA Vangolu Y PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı. . 2021; 431 - 440. 10.35234/fumbd.861115
Vancouver Vangolu Y PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı. . 2021; 431 - 440. 10.35234/fumbd.861115
IEEE Vangolu Y "PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı." , ss.431 - 440, 2021. 10.35234/fumbd.861115
ISNAD Vangolu, Yenal. "PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı". (2021), 431-440. https://doi.org/10.35234/fumbd.861115
APA Vangolu Y (2021). PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(2), 431 - 440. 10.35234/fumbd.861115
Chicago Vangolu Yenal PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33, no.2 (2021): 431 - 440. 10.35234/fumbd.861115
MLA Vangolu Yenal PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol.33, no.2, 2021, ss.431 - 440. 10.35234/fumbd.861115
AMA Vangolu Y PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021; 33(2): 431 - 440. 10.35234/fumbd.861115
Vancouver Vangolu Y PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021; 33(2): 431 - 440. 10.35234/fumbd.861115
IEEE Vangolu Y "PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı." Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33, ss.431 - 440, 2021. 10.35234/fumbd.861115
ISNAD Vangolu, Yenal. "PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı". Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33/2 (2021), 431-440. https://doi.org/10.35234/fumbd.861115