Yıl: 2022 Cilt: 26 Sayı: 5 Sayfa Aralığı: 1156 - 1176 Metin Dili: İngilizce DOI: 10.29228/jrp.210 İndeks Tarihi: 29-09-2022

Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study

Öz:
The aim of this work was to develop levofloxacin-loaded drug delivery systems for pulmonary administration. Levofloxacin-loaded PLGA microparticles were prepared by water-in-oil-in-oil (w/o/o) emulsion solvent evaporation method using PLGA as the polymer. Then, the effect of surfactant type and concentration in the inner aqueous phase or outer oily phase on the physicochemical characteristics of the microparticles were investigated. PLGA-based microparticles have spherical shape with a particle size of about 5 μm, which is suitable for pulmonary delivery. Very high values for encapsulation efficiency (up to 90%) were obtained. The in vitro release of levofloxacin from the PLGA microparticles was sustained for 24 hours. The aerodynamic diameter and fine particle fraction were 5.44 ± 0.19 μm and 50.99 ± 2.89%, respectively. Antimicrobial efficacy studies showed that levofloxacin-loaded PLGA microparticles inhibited bacterial growth. These results suggest that levofloxacin-loaded PLGA microparticles may be suitable for pulmonary administration.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Traini D, Young PM. Delivery of antibiotics to the respiratory tract: an update. Expert Opin Drug Deliv. 2009;6(9):897– 905. [CrossRef]
  • [2] Merchant Z, Taylor KMG, Stapleton P, Razak SA, Kunda N, Alfagih I, Sheikh K, Saleem IY, Somavarapu S. Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. Eur J Pharm Biopharm. 2014;88(3):816–829. [CrossRef]
  • [3] Learoyd TP, Burrows JL, French E, Seville PC. Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate. Eur J Pharm Biopharm. 2008;68(2):224–234. [CrossRef]
  • [4] Ungaro F, d’Angelo I, Coletta C, d’Emmanuele di Villa Bianca R, Sorrentino R, Perfetto B, Tufano MA, Miro A, La Rotonda MI, Quaglia F. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: Modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Control Release. 2012;157(1):149–159. [CrossRef]
  • [5] Desu HR, Thoma LA, Wood GC. Nebulization of cyclic arginine-glycine-(d)-aspartic acid-peptide grafted and drug encapsulated liposomes for inhibition of acute lung injury. Pharm Res. 2018;35(5):94. [CrossRef]
  • [6] Topal GR, Devrim B, Eryilmaz M, Bozkir A. Design of ciprofloxacin-loaded nano-and microcomposite particles for dry powder inhaler formulations: preparation, in vitro characterisation, and antimicrobial efficacy. J Microencapsul. 2018;35(6):533–547. [CrossRef]
  • [7] Ubale R V, Shastri PN, Oettinger C, D’Souza MJ. Pulmonary administration of microparticulate antisense oligonucleotide (aso) for the treatment of lung inflammation. AAPS PharmSciTech. 2018;19(4):1908–1919. [CrossRef]
  • [8] Pulivendala G, Bale S, Godugu C. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv Transl Res. 2020;10:339-353. [CrossRef]
  • [9] Puri V, Chaudhary KR, Singh A, Singh C. Inhalation potential of N-Acetylcysteine loaded PLGA nanoparticles for the management of tuberculosis: In vitro lung deposition and efficacy studies. Curr Res Pharmacol Drug Discov. 2022;3:100084. [CrossRef]
  • [10] Ungaro F, d’Emmanuele di Villa Bianca R, Giovino C, Miro A, Sorrentino R, Quaglia F, La Rotonda MI. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: In vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release. 2009;135(1):25–34. [CrossRef]
  • [11] Telko MJ, Hickey AJ. Dry Powder Inhaler Formulation. Respir Care. 2005;50(9):1209 – 1227. [CrossRef]
  • [12] Devrim B, Bozkır A, Canefe K. Preparation and evaluation of poly(lactic-co-glycolic acid) microparticles as a carrier for pulmonary delivery of recombinant human interleukin-2: II. In vitro studies on aerodynamic properties of dry powder inhaler formulations. Drug Dev Ind Pharm. 2011;37(11):1376–1386. [CrossRef]
  • [13] Doan TVP, Couet W, Olivier JC. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int J Pharm. 2011;414(1):112–117. [CrossRef]
  • [14] Feng T, Tian H, Xu C, Lin L, Xie Z, Lam MH-W, Liang H, Chen X. Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur J Pharm Biopharm. 2014;88(3):1086–1093. [CrossRef]
  • [15] Ramazani F, Chen W, Van Nostrum CF, Storm G, Kiessling F, Lammers T, Hennink WE, Kok RJ. Formulation and characterization of microspheres loaded with imatinib for sustained delivery. Int J Pharm. 2015;482(1):123–130. [CrossRef]
  • [16] Gaspar MC, Grégoire N, Sousa JJS, Pais AACC, Lamarche I, Gobin P, Olivier JC, Marchand S, Couet W. Pulmonary pharmacokinetics of levofloxacin in rats after aerosolization of immediate-release chitosan or sustained-release PLGA microspheres. Eur J Pharm Sci. 2016;93:184–191. [CrossRef]
  • [17] Devrim B, Alemdar M. The application of different microencapsulation methods and formulation parameters on antibiotic loaded PLGA microparticles for pulmonary delivery. Turkish J Pharm Sci. 2016;13(1):119–133. [CrossRef]
  • [18] Kalelkar PP, Moustafa DA, Riddick M, Goldberg JB, McCarty NA, García AJ. Bacteriophage-loaded poly(lactic-coglycolic acid) microparticles mitigate staphylococcus aureus infection and cocultures of staphylococcus aureus and pseudomonas aeruginosa. Adv Healthc Mater. 2021:e2102539. [CrossRef]
  • [19] Scherließ R, Janke J. Preparation of poly-lactic-co-glycolic acid nanoparticles in a dry powder formulation for pulmonary antigen delivery. Pharmaceutics. 2021;13(8):1196. [CrossRef]
  • [20] Wang Q, Chen C, Liu W, He X, Zhou N, Zhang D, Gu H, Li J, Jiang J, Huang W. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep. 2017;7(1):41808. [CrossRef]
  • [21] Schito AM, Schito GC. Levofloxacin, a broad spectrum anti-infective: from Streptococcus pneumoniae to Pseudomonas aeruginosa. J Chemother. 2004;16 Suppl 2:3–7. [CrossRef]
  • [22] Popa C, Mircheva M, Krämer BK, Berghofen A, Krüger B. Ceftolozane-tazobactam versus levofloxacin in urinary tract infection. Lancet. 2015;386(10000):1241–2. [CrossRef]
  • [23] Torres A, Liapikou A. Levofloxacin for the treatment of respiratory tract infections. Expert Opin Pharmacother. 2012;13(8):1203–1212. [CrossRef]
  • [24] Islan GA, Cacicedo ML, Bosio VE, Castro GR. Development and characterization of new enzymatic modified hybrid calcium carbonate microparticles to obtain nano-architectured surfaces for enhanced drug loading. J Colloid Interface Sci. 2015;439:76–87. [CrossRef]
  • [25] Camargo JA, Sapin A, Daloz D, Maincent P. Ivermectin-loaded microparticles for parenteral sustained release: in vitro characterization and effect of some formulation variables. J Microencapsul. 2010;27(7):609–617. [CrossRef]
  • [26] Xie X, Yang Y, Chi Q, Li Z, Zhang H, Li Y, Yang Y. Controlled release of dutasteride from biodegradable microspheres: in vitro and in vivo studies. PLoS One. 2014;9(12):e114835–e114835. [CrossRef]
  • [27] Vora L, V G S, Vavia P. Zero order controlled release delivery of cholecalciferol from injectable biodegradable microsphere: In-vitro characterization and in-vivo pharmacokinetic studies. Eur J Pharm Sci. 2017;107:78–86. [CrossRef]
  • [28] Zhang H, Pu C, Wang Q, Tan X, Gou J, He H, Zhang Y, Yin T, Wang Y, Tang X. Physicochemical characterization and pharmacokinetics of agomelatine-loaded PLGA microspheres for intramuscular injection. Pharm Res. 2018;36(1):9. [CrossRef]
  • [29] Wu J, Ding D, Ren G, Xu X, Yin X, Hu Y. Sustained delivery of endostatin improves the efficacy of therapy in Lewis lung cancer model. J Control Release. 2009;134(2):91–97. [CrossRef]
  • [30] Garg Y, Pathak K. Design and in vitro performance evaluation of purified microparticles of pravastatin sodium for intestinal delivery. AAPS PharmSciTech. 2011;12(2):673–682. [CrossRef]
  • [31] ICH Guideline Q2(R1), Validation of analytical procedures: text and methodology, November 2005. [CrossRef]
  • [32] Khoee S, Yaghoobian M. An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. Eur J Med Chem. 2009;44(6):2392–2399. [CrossRef]
  • [33] Guhagarkar SA, Malshe VC, Devarajan P V. Nanoparticles of polyethylene sebacate: A new biodegradable polymer. AAPS PharmSciTech. 2009;10(3):935. [CrossRef]
  • [34] Pichot R, Spyropoulos F, Norton IT. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. J Colloid Interface Sci. 2010;352(1):128–135. [CrossRef]
  • [35] Anarjan N, Nehdi IA, Tan CP. Influence of astaxanthin, emulsifier and organic phase concentration on physicochemical properties of astaxanthin nanodispersions. Chem Cent J. 2013;7(1):127. [CrossRef]
  • [36] Mainardes RM, Evangelista RC. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm. 2005;290(1):137–144. [CrossRef]
  • [37] Chaisri W, Hennink WE, Ampasavate C, Okonogi S. Cephalexin microspheres for dairy mastitis: Effect of preparation method and surfactant type on physicochemical properties of the microspheres. AAPS PharmSciTech. 2010;11(2):945–951. [CrossRef]
  • [38] Devrim B, Bozkır A. Preparation and evaluation of double-walled microparticles prepared with a modified water-inoil- in-oil-in-water (w1/o/o/w3) method. J Microencapsul. 2013;30(8):741–754. [CrossRef]
  • [39] Gaspar MC, Pais AACC, Sousa JJS, Brillaut J, Olivier J-C. Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. Int J Pharm. 2019;556:117–124. [CrossRef]
  • [40] Rojas J, Pinto-Alphandary H, Leo E, Pecquet S, Couvreur P, Fattal E. Optimization of the encapsulation and release of β-lactoglobulin entrapped poly(dl-lactide-co-glycolide) microspheres. Int J Pharm. 1999;183(1):67–71. [CrossRef]
  • [41] Maa YF, Hsu CC. Effect of primary emulsions on microsphere size and protein-loading in the double emulsion process. J Microencapsul. 1997;14(2):225–241. [CrossRef]
  • [42] Blanco-Prıeto MJ, Fattal E, Gulik A, Dedieu JC, Roques BP, Couvreur P. Characterization and morphological analysis of a cholecystokinin derivative peptide-loaded poly(lactide-co-glycolide) microspheres prepared by a water-in-oil-inwater emulsion solvent evaporation method. J Control Release. 1997;43(1):81–87. [CrossRef]
  • [43] Dinarvand R, Moghadam SH, Sheikhi A, Atyabi F. Effect of surfactant HLB and different formulation variables on the properties of poly-D,L-lactide microspheres of naltrexone prepared by double emulsion technique. J Microencapsul. 2005;22(2):139–151. [CrossRef]
  • [44] Devrim B, Bozkır A, Canefe K. Preparation and evaluation of PLGA microparticles as carrier for the pulmonary delivery of rhIL-2 : I. Effects of some formulation parameters on microparticle characteristics. J Microencapsul. 2011;28(6):582–594. [CrossRef]
  • [45] Sun Y, Zhu L, Wu T, Cai T, Gunn EM, Yu L. Stability of amorphous pharmaceutical solids: crystal growth mechanisms and effect of polymer additives. AAPS J. 2012;14(3):380–388. [CrossRef]
  • [46] Ansary RH, Awang MB, Rahman MM. Biodegradable poly(d,l-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs - A review. Trop J Pharm Res. 2014;13(7):1179–1190. [CrossRef]
  • [47] Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327. [CrossRef]
  • [48] Mahboubian A, Hashemein SK, Moghadam S, Atyabi F, Dinarvand R. Preparation and in-vitro evaluation of controlled release PLGA microparticles containing triptoreline. Iran J Pharm Res IJPR. 2010;9(4):369–378. [CrossRef]
  • [49] Bolourtchian N, Sattari Javid F, Dadashzadeh S. The effect of various surfactants on release behavior of procainamide HCl from ethylcellulose based matrices. Iran J Pharm Res. 2010;4(1):13–19. [CrossRef]
  • [50] Soares S, Fonte P, Costa A, Andrade J, Seabra V, Ferreira D, Reis S, Sarmento B. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int J Pharm. 2013;456:370-381. [CrossRef]
  • [51] Oz UC, Küçüktürkmen B, Devrim B, Saka OM, Bozkir A. Development and optimization of alendronate sodium loaded PLGA nanoparticles by central composite design. Macromol Res. 2019;27(9):857–866. [CrossRef]
  • [52] Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21(4):167–193. [CrossRef]
  • [53] Gorman EM, Samas B, Munson EJ. Understanding the dehydration of levofloxacin hemihydrate. J Pharm Sci. 2012;101(9):3319–3330. [CrossRef]
  • [54] Akdag Cayli Y, Sahin S, Buttini F, Balducci AG, Montanari S, Vural I, Oner L. Dry powders for the inhalation of ciprofloxacin or levofloxacin combined with a mucolytic agent for cystic fibrosis patients. Drug Dev Ind Pharm. 2017;43(8):1378–1389. [CrossRef]
  • [55] Dillen K, Vandervoort J, Van den Mooter G, Verheyden L, Ludwig A. Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm. 2004;275(1):171–187. [CrossRef]
  • [56] Sant S, Nadeau V, Hildgen P. Effect of porosity on the release kinetics of propafenone-loaded PEG-g-PLA nanoparticles. J Control Release. 2005;107(2):203–214. [CrossRef]
  • [57] Jalvandi J, White M, Gao Y, Truong YB, Padhye R, Kyratzis IL. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release. Mater Sci Eng C. 2017;73:440–446. [CrossRef]
  • [58] Jamrógiewicz M, Łukasiak J. Short term monitor of photodegradation processes in ranitidine hydrochloride observed by FTIR and ATR-FTIR. J Food Drug Anal. 2009;17(5):342–347. [CrossRef]
  • [59] Jain H, Bairagi A, Srivastava S, Singh SB, Mehra NK. Recent advances in the development of microparticles for pulmonary administration. Drug Discov Today. 2020 Oct;25(10):1865-1872. [CrossRef]
  • [60] Yang MY, Chan JGY, Chan H-K. Pulmonary drug delivery by powder aerosols. J Control Release. 2014;193:228–240. [CrossRef]
  • [61] Lee J-H, Park TG, Choi H-K. Effect of formulation and processing variables on the characteristics of microspheres for water-soluble drugs prepared by w/o/o double emulsion solvent diffusion method. Int J Pharm. 2000;196(1):75–83. [CrossRef]
  • [62] Mahmoud BS, McConville C. Development and optimization of irinotecan-loaded PCl nanoparticles and their cytotoxicity against primary high-grade glioma cells. Pharmaceutics. 2021;13(4):541. [CrossRef]
  • [63] Watts AB, Cline AM, Saad AR, Johnson SB, Peters JI, Williams RO. Characterization and pharmacokinetic analysis of tacrolimus dispersion for nebulization in a lung transplanted rodent model. Int J Pharm. 2010;384(1):46–52. [CrossRef]
  • [64] Eskandar F, Lejeune M, Edge S. Low powder mass filling of dry powder inhalation formulations. Drug Dev Ind Pharm. 2011;37(1):24–32. [CrossRef]
  • [65] Jalalipour M, Gilani K, Tajerzadeh H, Najafabadi AR, Barghi M. Characterization and aerodynamic evaluation of spray dried recombinant human growth hormone using protein stabilizing agents. Int J Pharm. 2008;352(1):209–216. [CrossRef]
  • [66] Ameeduzzafar, Imam SS, Abbas Bukhari SN, Ahmad J, Ali A. Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: In-vitro characterization, ocular tolerance and antibacterial activity. Int J Biol Macromol. 2018;108:650–659. [CrossRef]
APA İMAMOĞLU S, GÖKBERK B, eryilmaz m, Bozkır A (2022). Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study. , 1156 - 1176. 10.29228/jrp.210
Chicago İMAMOĞLU Selin,GÖKBERK Burcu DEVRİM,eryilmaz mujde,Bozkır Asuman Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study. (2022): 1156 - 1176. 10.29228/jrp.210
MLA İMAMOĞLU Selin,GÖKBERK Burcu DEVRİM,eryilmaz mujde,Bozkır Asuman Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study. , 2022, ss.1156 - 1176. 10.29228/jrp.210
AMA İMAMOĞLU S,GÖKBERK B,eryilmaz m,Bozkır A Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study. . 2022; 1156 - 1176. 10.29228/jrp.210
Vancouver İMAMOĞLU S,GÖKBERK B,eryilmaz m,Bozkır A Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study. . 2022; 1156 - 1176. 10.29228/jrp.210
IEEE İMAMOĞLU S,GÖKBERK B,eryilmaz m,Bozkır A "Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study." , ss.1156 - 1176, 2022. 10.29228/jrp.210
ISNAD İMAMOĞLU, Selin vd. "Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study". (2022), 1156-1176. https://doi.org/10.29228/jrp.210
APA İMAMOĞLU S, GÖKBERK B, eryilmaz m, Bozkır A (2022). Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study. Journal of research in pharmacy (online), 26(5), 1156 - 1176. 10.29228/jrp.210
Chicago İMAMOĞLU Selin,GÖKBERK Burcu DEVRİM,eryilmaz mujde,Bozkır Asuman Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study. Journal of research in pharmacy (online) 26, no.5 (2022): 1156 - 1176. 10.29228/jrp.210
MLA İMAMOĞLU Selin,GÖKBERK Burcu DEVRİM,eryilmaz mujde,Bozkır Asuman Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study. Journal of research in pharmacy (online), vol.26, no.5, 2022, ss.1156 - 1176. 10.29228/jrp.210
AMA İMAMOĞLU S,GÖKBERK B,eryilmaz m,Bozkır A Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study. Journal of research in pharmacy (online). 2022; 26(5): 1156 - 1176. 10.29228/jrp.210
Vancouver İMAMOĞLU S,GÖKBERK B,eryilmaz m,Bozkır A Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study. Journal of research in pharmacy (online). 2022; 26(5): 1156 - 1176. 10.29228/jrp.210
IEEE İMAMOĞLU S,GÖKBERK B,eryilmaz m,Bozkır A "Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study." Journal of research in pharmacy (online), 26, ss.1156 - 1176, 2022. 10.29228/jrp.210
ISNAD İMAMOĞLU, Selin vd. "Effect of surfactant types and concentrations on levofloxacin-loaded PLGA microparticles for pulmonary delivery – An in vitro study". Journal of research in pharmacy (online) 26/5 (2022), 1156-1176. https://doi.org/10.29228/jrp.210