Yıl: 2022 Cilt: 10 Sayı: 7 Sayfa Aralığı: 1270 - 1280 Metin Dili: İngilizce DOI: 10.24925/turjaf.v10i7.1270-1280.5246 İndeks Tarihi: 02-10-2022

Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry

Öz:
Effects of different drying temperatures (45, 55, and 65°C) on drying kinetic parameters, physical quality attributes, and contents of bioactive compounds of strawberry samples were investigated by a pilot scale cabin dryer with air circulation. The diffusion coefficient of water was determined between (Deff) 3.69-9.75 (m2/s) × 10-10, while the diffusion activation energy (Ea) was calculated as 43.42 kJ/mol. Significant changes were observed in color parameters (L*, a*, b*, C*, Hue* and ∆E*) depending on the drying temperature. It has been determined that strawberry is an important source of phenolics and contains high amounts of three anthocyanin compounds and ellagic acid. The most abundant anthocyanin compound in strawberry samples was identified as pelargonidin-3-glucoside (80.26 mg/100g DM), and followed by pelargonidin-3-rutinoside (7.72 mg/100g KM) and cyanidin- 3-glucoside (5.08 mg/100g KM). On the other hand, ellagic acid content was determined as the highest in the dried strawberries (23.11-37.04 mg/100g DM) after different drying temperatures. It is concluded that moderate temperatures (<65°C) should be chosen to dry strawberry fruit for the preservation of strawberry bioactive compounds having significant contributions to human health in addition to obtain more attractive dried strawberry products.
Anahtar Kelime:

Farklı Sıcaklıkların Çileğin Kuruma Kinetiği ve Bazı Kalite Özellikleri Üzerine Etkisi

Öz:
Bu çalışmada farklı kurutma sıcaklıklarının (45, 55 ve 65°C) çileğin kuruma kinetiği parametreleri, bazı fiziksel kalite özellikleri ve biyoaktif bileşenlerinin içeriği üzerine etkisi ortaya konmuştur. Bunun için hava sirkülasyonlu pilot ölçekli kabin tipi kurutucu kullanılmıştır. Elde edilen bulgulara göre suyun difüzyon katsayısı (Deff) 3,69-9,75 (m2/s) × 10-10 arasında değiştiği tespit edilmişken difüzyon aktivasyon enerjisi (Ea) 43,42 kJ/mol olarak hesaplanmıştır. Kurutma sıcaklığına bağlı olarak renk parametrelerinde (L*, a*, b*, C*, Hue* ve ∆E*) belirgin değişiklikler gerçekleşmiştir. Çileğin önemli bir fenolik kaynağı olduğu ve üç antosiyanin bileşen ile elajik asidi yüksek miktarda içerdiği belirlenmiştir. Çileğin antosiyanin bileşenlerinden en baskın olanı pelargonidin-3-glikozit (80,26 mg/100g KM) olup bunu pelargonidin-3-rutinozit (7,72 mg/100g KM) ve siyanidin-3-glikozit (5,08 mg/100g KM) takip etmiştir. Kurutma sıcaklığına bağlı olarak çileğin antosiyanin bileşenlerinde önemli azalmalar meydana gelmiştir. Öte yandan elajik asit içeriği kurutulmuş çileklerde kurutma sıcaklığına bağlı olarak daha yüksek tespit edilmiştir (23,11-37,04 mg/100g KM). Elde edilen bulgular beraber irdelendiğinde çilekte bulunan ve insan sağlığına önemli katkılar sunan biyoaktif bileşenlerin korunması ve yüksek albenili kuru çileklerin elde edilmesi için ılımlı kurutma sıcaklıklarının (<65°C) seçilmesi gerektiği sonucuna varılmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abdullakasim P, Songchitsomboon S, Techagumpuch M, Balee N, Swatsitang P, Sungpuag P. 2007. Antioxidant capacity, total phenolics and sugar content of selected Thai health beverages. International Journal of Food Sciences and Nutrition, 58(1): 77-85. https://doi.org/10.1080/09637 480601140946.
  • Afrin S, Gasparrini M, Forbes-Hernandez TY, Reboredo- Rodriguez P, Mezzetti B, Varela-Lopez A, Battino M. 2016. Promising Health Benefits of the Strawberry: A Focus on Clinical Studies. Journal of Agricultural and Food Chemistry, 64(22): 4435-4449. https://doi.org/10.1021/acs.jafc.6b00857.
  • Agcam E, Akyıldız A. 2015. Effects of different solvents and acid concentrations on extraction of anthocyanins from black carrot pomace. The Journal of Food, 40(3): 149-156. https://doi.org/10.15237/gida.GD14064.
  • Babalis SJ, Belessiotis VG. 2004. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering, 65(3): 449-458. https://doi.org/10.1016/ j.jfoodeng.2004.02.005.
  • Basu A, Rhone M, Lyons TJ. 2010. Berries: emerging impact on cardiovascular health. Nutrition Reviews, 68(3): 168-177. https://doi.org/10.1111/j.1753-4887.2010.00273.x.
  • Chirife J, Fontana AJ. 2020. Introduction: Historical Highlights of Water Activity Research. In: Barbosa-Cánovas GV, Fontana AJ, Schmidt SJ, Labuza TP(Eds.), Water activity in foods fundamentals and applications. USA: Blackwell Publishing.
  • Crank, J. 1975. The mathematics of diffusion. Clarendon Press, England.
  • Doymaz İ. 2008. Convective drying kinetics of strawberry. Chemical Engineering and Processing: Process Intensification, 47(5): 914-919. https://doi.org/10.1016/ j.cep.2007.02.003.
  • Evtyugin DD, Magina S, Evtuguin, DV. 2020. Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review. Molecules, 25(12). https://doi.org/ 10.3390/molecules25122745.
  • Gamboa-Santos J, Montilla A, Cárcel JA, Villamiel M, Garcia- Perez JV. 2014. Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128: 132-139. https://doi.org/10.1016/ j.jfoodeng.2013.12.021.
  • Giampieri F, Alvarez-Suarez JM, Battino M. 2014. Strawberry and Human Health: Effects beyond Antioxidant Activity. Journal of Agricultural and Food Chemistry, 62(18): 3867- 3876. https://doi.org/10.1021/jf405455n.
  • Giampieri F, Alvarez-Suarez JM, Mazzoni L, Romandini S, Bompadre S, Diamanti J, Battino M. 2013. The potential impact of strawberry on human health. Natural Product Research, 27(4-5): 448-455. https://doi.org/10.1080/147864 19.2012.706294.
  • Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M. 2012. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1): 9-19. https://doi.org/10.1016/j.nut.2011.08.009.
  • Giusti MM, Wrolstad RE. 2001. Characterization and Measurement with UV-Visible Spectroscopy. In: Wrolstad RE, Schwartz SJ (Eds.), Current Protocols in Food Analytical Chemistry (pp. 1-13). New York: John Wiley and Sons.
  • Henning SM, Seeram NP, Zhang YJ, Li LY, Gao K, Lee RP, Heber D. 2010. Strawberry Consumption Is Associated with Increased Antioxidant Capacity in Serum. Journal of Medicinal Food, 13(1): 116-122. https://doi.org/10.1089/ jmf.2009.0048.
  • Ji T, Zhang R, Dong X, Sameen DE, Ahmed S, Li S, Liu Y. 2020. Effects of Ultrasonication Time on the Properties of Polyvinyl Alcohol/Sodium Carboxymethyl Cellulose/Nano- ZnO/Multilayer Graphene Nanoplatelet Composite Films. Nanomaterials (Basel), 10(9). https://doi.org/10.3390/ nano10091797.
  • Kang SW, Hwang JH, Chung KH, Park SH. 2021. Evaluation of infrared assisted freeze drying for strawberry snacks: drying kinetics, energy efficiency and quality attributes. Food Science and Biotechnology, 30(8): 1087-1096. https://doi.org/ 10.1007/s10068-021-00949-1.
  • Krzykowski A, Dziki D, Rudy S, Gawlik-Dziki U, Janiszewska- Turak E, Biernacka B. 2020. Wild Strawberry Fragaria vesca L.: Kinetics of Fruit Drying and Quality Characteristics of the Dried Fruits. Processes, 8(10). https://doi.org/10.3390/ pr8101265.
  • Maraei RW, Elsawy KM. 2017. Chemical quality and nutrient composition of strawberry fruits treated by gamma-irradiation. Journal of Radiation Research and Applied Sciences, 10(1): 80- 87. https://doi.org/10.1016/j.jrras. 2016.12.004.
  • Mendez-Lagunas L, Rodriguez-Ramirez J, Cruz-Gracida M, Sandoval-Torres S, Barriada-Bernal G. 2017. Convective drying kinetics of strawberry (Fragaria ananassa): Effects on antioxidant activity, anthocyanins and total phenolic content. Food Chemistry, 230: 174-181. https://doi.org/10.1016/ j.foodchem.2017.03.010.
  • Nayak SL, Sethi S, Sharma RR, Sharma RM, Singh S, Singh D. 2020. Aqueous ozone controls decay and maintains quality attributes of strawberry (Fragaria x ananassa Duch.). Journal of Food Science and Technology, 57(1): 319-326. https://doi.org/10.1007/s13197-019-04063-3.
  • Sadowska A, Świderski F, Hallmann E. 2020. Bioactive, Physicochemical and Sensory Properties as Well as Microstructure of Organic Strawberry Powders Obtained by Various Drying Methods. Applied Sciences, 10(14). https://doi.org/10.3390/app10144706.
  • Sandhu J, Parikh A, Takhar PS. 2016. Experimental determination of convective heat transfer coefficient during controlled frying of potato discs. Lwt-Food Science and Technology, 65: 180- 184. https://doi.org/10.1016/j.lwt. 2015.08.007.
  • Sarıdaş MA. 2021. Seasonal variation of strawberry fruit quality in widely grown cultivars under Mediterranean climate condition. Journal of Food Composition and Analysis, 97. https://doi.org/10.1016/j.jfca.2020.103733.
  • Sarıdaş MA, Ağçam E, Akbaş FC, Akyıldiz A, Paydaş Kargı S. 2022. Comparison of superior bred strawberry genotypes with popular cultivars in terms of fruit bioactive compounds during the wide harvest dates. South African Journal of Botany, 147: 142-152. https://doi.org/10.1016/j.sajb. 2022.01.010.
  • Shrivastav S, Ganorkar PM, Prajapati KM, Patel DB. 2021. Drying kinetics, heat quantities, and physiochemical characteristics of strawberry puree by Refractance Window drying system. Journal of Food Process Engineering, 44(9). https://doi.org/10.1111/jfpe.13776.
  • Singh RP, Heldman DR. 2009. Introduction to Food Engineering. Glasgow Academic Press.
  • Szwajgier D, Halinowski T, Helman E, Tylus K, Tymcio A. 2014. Influence of different heat treatments on the content of phenolic acids and their derivatives in selected fruits. Fruits, 69(2): 167- 178. https://doi.org/10.1051/fruits/2014004.
  • Van Koerten KN, Somsen D, Boom RM, Schutyser MAI. 2017. Modelling water evaporation during frying with an evaporation dependent heat transfer coefficient. Journal of Food Engineering, 197: 60-67. https://doi.org/10.1016/ j.jfoodeng.2016.11.007.
  • Vega-Galvez A, Miranda M, Bilbao-Sainz C, Uribe E, Lemus- Mondaca R. 2008. Empirical Modeling of Drying Process for Apple (Cv. Granny Smith) Slices at Different Air Temperatures. Journal of Food Processing and Preservation, 32(6): 972-986. https://doi.org/10.1111/j.1745-4549.2008. 00227.x.
  • Yoon YS, Ameer K, Song BS, Kim JK, Park HY, Lee KC, Park JH. 2020. Effects of X-ray irradiation on the postharvest quality characteristics of 'Maehyang' strawberry (Fragaria x ananassa). Food Chemistry, 325. https://doi.org/10.1016/ j.foodchem.2020.126817.
  • Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555-559.
APA ağçam e (2022). Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry. , 1270 - 1280. 10.24925/turjaf.v10i7.1270-1280.5246
Chicago ağçam erdal Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry. (2022): 1270 - 1280. 10.24925/turjaf.v10i7.1270-1280.5246
MLA ağçam erdal Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry. , 2022, ss.1270 - 1280. 10.24925/turjaf.v10i7.1270-1280.5246
AMA ağçam e Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry. . 2022; 1270 - 1280. 10.24925/turjaf.v10i7.1270-1280.5246
Vancouver ağçam e Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry. . 2022; 1270 - 1280. 10.24925/turjaf.v10i7.1270-1280.5246
IEEE ağçam e "Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry." , ss.1270 - 1280, 2022. 10.24925/turjaf.v10i7.1270-1280.5246
ISNAD ağçam, erdal. "Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry". (2022), 1270-1280. https://doi.org/10.24925/turjaf.v10i7.1270-1280.5246
APA ağçam e (2022). Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 10(7), 1270 - 1280. 10.24925/turjaf.v10i7.1270-1280.5246
Chicago ağçam erdal Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 10, no.7 (2022): 1270 - 1280. 10.24925/turjaf.v10i7.1270-1280.5246
MLA ağçam erdal Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.10, no.7, 2022, ss.1270 - 1280. 10.24925/turjaf.v10i7.1270-1280.5246
AMA ağçam e Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2022; 10(7): 1270 - 1280. 10.24925/turjaf.v10i7.1270-1280.5246
Vancouver ağçam e Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2022; 10(7): 1270 - 1280. 10.24925/turjaf.v10i7.1270-1280.5246
IEEE ağçam e "Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 10, ss.1270 - 1280, 2022. 10.24925/turjaf.v10i7.1270-1280.5246
ISNAD ağçam, erdal. "Effect of Different Temperatures on Drying Kinetics and Some Quality Attributes of Strawberry". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 10/7 (2022), 1270-1280. https://doi.org/10.24925/turjaf.v10i7.1270-1280.5246