Yıl: 2022 Cilt: 18 Sayı: 3 Sayfa Aralığı: 309 - 319 Metin Dili: İngilizce DOI: 10.18466/cbayarfbe.1020070 İndeks Tarihi: 03-10-2022

Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems

Öz:
This study proposes a method to identify the most efficient regions for energy production before installing FPV on any water reservoir. Remote sensing (RS) was used to determine the 20-year area and shoreline changes of the Demirköprü Dam reservoir. The reservoir's annual and monthly total global horizontal irradiance (GHI) values were calculated based on 20 years of observations using a geographic information system (GIS) solar analysis tool. The regional theoretical capacity factor (RTCF) proposed in this study was modelled using total annual GHI values. The water surface was divided into four regions using RTCFs. 94.97%, 4.92%, 0.08% and 0.02% of the total water surface area were classified as RTCF21, RTCF20, RTCF19 and RTCF18, respectively. The annual electrical energy potentials per unit for each RTCF were calculated. The novel method developed in this study for determining the optimum location of FPV SPPs to be installed on water surfaces reveals the importance of evaluating land topography and considering annual shading patterns.
Anahtar Kelime: Floating photovoltaic geographical information system regional theoretical capacity factor remote sensing solar analysis

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. R. Nagananthini and R. Nagavinothini, "Investigation on floating photovoltaic covering system in rural Indian reservoir to minimize evaporation loss," Int. J. Sustain. Energy, vol. 40, no. 8, pp. 781–805, Sep. 2021, doi: 10.1080/14786451.2020.1870975.
  • [2]. M. Tina, F. Bontempo Scavo, L. Merlo, and F. Bizzarri, "Analysis of water environment on the performances of floating photovoltaic plants," Renew. Energy, vol. 175, pp. 281–295, 2021, doi: 10.1016/j.renene.2021.04.082.
  • [3]. G. Mamatha and P. S. Kulkarni, "Assessment of floating solar photovoltaic potential in India's existing hydropower reservoirs," Energy Sustain. Dev., vol. 69, pp. 64–76, Aug. 2022, doi: 10.1016/j.esd.2022.05.011.
  • [4]. H. Nisar, A. Kashif Janjua, H. Hafeez, S. Shakir, N. Shahzad, and A. Waqas, "Thermal and electrical performance of solar floating PV system compared to on-ground PV system-an experimental investigation," Sol. Energy, vol. 241, no. March, pp. 231–247, Jul. 2022, doi: 10.1016/j.solener.2022.05.062.
  • [5]. A. El Hammoumi, A. Chalh, A. Allouhi, S. Motahhir, A. El Ghzizal, and A. Derouich, "Design and construction of a test bench to investigate the potential of floating PV systems," J. Clean. Prod., vol. 278, p. 123917, 2021, doi: 10.1016/j.jclepro.2020.123917.
  • [6]. R. Claus and M. López, "Key issues in the design of floating photovoltaic structures for the marine environment," Renew. Sustain. Energy Rev., vol. 164, no. March, p. 112502, Aug. 2022, doi: 10.1016/j.rser.2022.112502.
  • [7]. H. Rauf, M. S. Gull, and N. Arshad, "Integrating Floating Solar PV with Hydroelectric Power Plant: Analysis of Ghazi Barotha Reservoir in Pakistan," Energy Procedia, vol. 158, pp. 816–821, Feb. 2019, doi: 10.1016/j.egypro.2019.01.214.
  • [8]. I. S. Rodrigues, G. L. B. Ramalho, and P. H. A. Medeiros, "Potential of floating photovoltaic plant in a tropical reservoir in Brazil," J. Environ. Plan. Manag., vol. 63, no. 13, pp. 2334–2356, 2020, doi: 10.1080/09640568.2020.1719824.
  • [9]. S. Sulaeman, E. Brown, R. Quispe-Abad, and N. Müller, "Floating PV system as an alternative pathway to the amazon dam underproduction," Renew. Sustain. Energy Rev., vol. 135, no. July 2020, p. 110082, Jan. 2021, doi: 10.1016/j.rser.2020.110082.
  • [10]. M. Arekhi, C. Goksel, F. Balik Sanli, and G. Senel, "Comparative Evaluation of the Spectral and Spatial Consistency of Sentinel-2 and Landsat-8 OLI Data for Igneada Longos Forest," ISPRS Int. J. Geo-Information, vol. 8, no. 2, p. 56, 2019, doi: 10.3390/ijgi8020056.
  • [11]. X. Yang, S. Zhao, X. Qin, N. Zhao, and L. Liang, "Mapping of urban surface water bodies from sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening," Remote Sens., vol. 9, no. 6, pp. 1–19, 2017, doi: 10.3390/rs9060596.
  • [12]. N. N. Patel et al., "Multitemporal settlement and population mapping from Landsat using Google Earth Engine," Int. J. Appl. Earth Obs. Geoinf., vol. 35, no. PB, pp. 199–208, Mar. 2015, doi: 10.1016/j.jag.2014.09.005.
  • [13]. R. Goldblatt, W. You, G. Hanson, and A. Khandelwal, "Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine," Remote Sens., vol. 8, no. 8, p. 634, Aug. 2016, doi: 10.3390/rs8080634.
  • [14]. Y. Choi, "Solar Power System Planning and Design," Appl. Sci., vol. 10, no. 1, p. 367, Jan. 2020, doi: 10.3390/app10010367.
  • [15]. Y. Charabi and A. Gastli, "GIS assessment of large CSP plant in Duqum, Oman," Renew. Sustain. Energy Rev., vol. 14, no. 2, pp. 835– 841, 2010.
  • [16]. H. Jiang et al., "Geospatial assessment of rooftop solar photovoltaic potential using multi-source remote sensing data," Energy AI, vol. 10, no. July, p. 100185, Nov. 2022, doi: 10.1016/j.egyai.2022.100185.
  • [17]. S. Lin et al., "Accurate Recognition of Building Rooftops and Assessment of Long-Term Carbon Emission Reduction from Rooftop Solar Photovoltaic Systems Fusing GF-2 and Multi-Source Data," Remote Sens., vol. 14, no. 3144, Jun. 2022, doi: 10.3390/rs14133144.
  • [18]. B. Chen, Y. Che, J. Wang, H. Li, L. Yu, and D. Wang, "An estimation framework of regional rooftop photovoltaic potential based on satellite remote sensing images," Glob. Energy Interconnect., vol. 5, no. 3, pp. 281–292, Jun. 2022, doi: 10.1016/j.gloei.2022.06.006.
  • [19]. X. Huang, K. Hayashi, T. Matsumoto, L. Tao, Y. Huang, and Y. Tomino, "Estimation of Rooftop Solar Power Potential by Comparing Solar Radiation Data and Remote Sensing Data—A Case Study in Aichi, Japan," Remote Sens., vol. 14, no. 1742, Apr. 2022, doi: 10.3390/rs14071742.
  • [20]. V. Stack and L. L. Narine, "Sustainability at Auburn University: Assessing Rooftop Solar Energy Potential for Electricity Generation with Remote Sensing and GIS in a Southern US Campus," Sustainability, vol. 14, no. 626, Jan. 2022, doi: 10.3390/su14020626.
  • [21]. L. Romero Rodríguez, E. Duminil, J. Sánchez Ramos, and U. Eicker, "Assessment of the photovoltaic potential at urban level based on 3D city models: A case study and new methodological approach," Sol. Energy, vol. 146, pp. 264–275, 2017, doi: 10.1016/j.solener.2017.02.043.
  • [22]. M. Aslani and S. Seipel, "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Appl. Energy, vol. 306, no. 118033, Jan. 2022, doi: 10.1016/j.apenergy.2021.118033.
  • [23]. Villacreses, J. Martínez-Gómez, D. Jijón, and M. Cordovez, "Geolocation of photovoltaic farms using Geographic Information Systems (GIS) with Multiple-criteria decision-making (MCDM) methods: Case of the Ecuadorian energy regulation," Energy Reports, vol. 8, pp. 3526–3548, Nov. 2022, doi: 10.1016/j.egyr.2022.02.152.
  • [24]. B. Elboshy, M. Alwetaishi, R. M. H. Aly, and A. S. Zalhaf, "A suitability mapping for the PV solar farms in Egypt based on GIS- AHP to optimize multi-criteria feasibility," Ain Shams Eng. J., vol. 13, no. 101618, May 2022, doi: 10.1016/j.asej.2021.10.013.
  • [25]. S. Zambrano-Asanza, J. Quiros-Tortos, and J. F. Franco, "Optimal site selection for photovoltaic power plants using a GIS- based multi-criteria decision making and spatial overlay with electric load," Renew. Sustain. Energy Rev., vol. 143, no. 110853, Jun. 2021, doi: 10.1016/j.rser.2021.110853.
  • [26]. J. Song and Y. Choi, "Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea," Energies, vol. 9, no. 2, p. 102, Feb. 2016, doi: 10.3390/en9020102.
  • [27]. A. Sahu, N. Yadav, and K. Sudhakar, "Floating photovoltaic power plant: A review," Renew. Sustain. Energy Rev., vol. 66, pp. 815–824, 2016, doi: 10.1016/j.rser.2016.08.051.
  • [28]. M. Abid, Z. Abid, J. Sagin, R. Murtaza, D. Sarbassov, and M. Shabbir, "Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries," Int. J. Environ. Sci. Technol., vol. 16, no. 3, pp. 1755–1762, Mar. 2019, doi: 10.1007/s13762-018-2080-5.
  • [29]. N. Mattsson, V. Verendel, F. Hedenus, and L. Reichenberg, "An autopilot for energy models – Automatic generation of renewable supply curves, hourly capacity factors and hourly synthetic electricity demand for arbitrary world regions," Energy Strateg. Rev., vol. 33, p. 100606, Jan. 2021, doi: 10.1016/j.esr.2020.100606.
  • [30]. A. Goswami and P. K. Sadhu, "Degradation analysis and the impacts on feasibility study of floating solar photovoltaic systems," Sustain. Energy, Grids Networks, vol. 26, p. 100425, 2021, doi: 10.1016/j.segan.2020.100425.
  • [31]. P. A. Adedeji, S. A. Akinlabi, N. Madushele, and O. O. Olatunji, "Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: A mini review," J. Clean. Prod., vol. 269, p. 122104, 2020, doi: 10.1016/j.jclepro.2020.122104.
  • [32]. P. A. Trotter, R. Maconachie, and M. C. McManus, "Solar energy's potential to mitigate political risks: The case of an optimized Africa-wide network," Energy Policy, vol. 117, no. March, pp. 108– 126, 2018, doi: 10.1016/j.enpol.2018.02.013.
  • [33]. O. S. Yılmaz, F. Gülgen, F. Balık Şanlı, and A. M. Ateş, “Demirköprü Barajının Su Yüzey Sınırlarının Belirlenmesinde Sentinel –2 (MSI) Görüntüleri Kullanılarak Farklı Algoritmalar ve Su Endeksleri Performanslarının Araştrılması,” in Hezarfen International Science, Mathematics, and Engineering Sciences Congress, 2019, pp. 293–305.
  • [34]. L. Breiman, "Random Forests," Mach. Learn., vol. 45, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
  • [35]. Y. Jin, X. Liu, Y. Chen, and X. Liang, "Land-cover mapping using Random Forest classification and incorporating NDVI time- series and texture: a case study of central Shandong," Int. J. Remote Sens., vol. 39, no. 23, pp. 8703–8723, Dec. 2018, doi: 10.1080/01431161.2018.1490976.
  • [36]. Y. He, C. Wang, F. Chen, H. Jia, D. Liang, and A. Yang, "Feature comparison and optimization for 30-M winter wheat mapping based on Landsat-8 and Sentinel-2 data using random forest algorithm," Remote Sens., vol. 11, no. 5, 2019, doi: 10.3390/rs11050535.
  • [37]. T. Noi Phan, V. Kuch, and L. W. Lehnert, "Land cover classification using google earth engine and random forest classifier- the role of image composition," Remote Sens., vol. 12, no. 15, 2020, doi: 10.3390/RS12152411.
  • [38]. A. M. Ates, O. S. Yilmaz, and F. Gülgen, "Using remote sensing to calculate fl oating photovoltaic technical potential of a dam' s surface," Sustain. Energy Technol. Assessments, vol. 41, no. July, p.100799, 2020, doi: 10.1016/j.seta.2020.100799.
  • [39]. M. Mwanza and K. Ulgen, GIS-Based Assessment of Solar Energy Harvesting Sites and Electricity Generation Potential in Zambia. 2021.
  • [40]. A. M. Ates and H. Singh, "Rooftop solar Photovoltaic (PV) plant – One year measured performance and simulations," J. King Saud Univ. - Sci., vol. 33, no. 3, p. 101361, 2021, doi: 10.1016/j.jksus.2021.101361.
  • [41]. A. Gerbo, K. V. Suryabhagavan, and T. Kumar Raghuvanshi, "GIS-based approach for modeling grid-connected solar power potential sites: a case study of East Shewa Zone, Ethiopia," Geol. Ecol. Landscapes, vol. 00, no. 00, pp. 1–15, 2020, doi: 10.1080/24749508.2020.1809059.
  • [42]. E. Ghiani, F. Pilo, and S. Cossu, "Evaluation of photovoltaic installations performances in Sardinia," Energy Convers. Manag., vol. 76, pp. 1134–1142, Dec. 2013, doi: 10.1016/j.enconman.2013.09.012.
APA Ateş A, Yılmaz O, Gülgen F (2022). Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems. , 309 - 319. 10.18466/cbayarfbe.1020070
Chicago Ateş Ali Murat,Yılmaz Osman Salih,Gülgen Fatih Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems. (2022): 309 - 319. 10.18466/cbayarfbe.1020070
MLA Ateş Ali Murat,Yılmaz Osman Salih,Gülgen Fatih Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems. , 2022, ss.309 - 319. 10.18466/cbayarfbe.1020070
AMA Ateş A,Yılmaz O,Gülgen F Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems. . 2022; 309 - 319. 10.18466/cbayarfbe.1020070
Vancouver Ateş A,Yılmaz O,Gülgen F Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems. . 2022; 309 - 319. 10.18466/cbayarfbe.1020070
IEEE Ateş A,Yılmaz O,Gülgen F "Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems." , ss.309 - 319, 2022. 10.18466/cbayarfbe.1020070
ISNAD Ateş, Ali Murat vd. "Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems". (2022), 309-319. https://doi.org/10.18466/cbayarfbe.1020070
APA Ateş A, Yılmaz O, Gülgen F (2022). Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18(3), 309 - 319. 10.18466/cbayarfbe.1020070
Chicago Ateş Ali Murat,Yılmaz Osman Salih,Gülgen Fatih Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18, no.3 (2022): 309 - 319. 10.18466/cbayarfbe.1020070
MLA Ateş Ali Murat,Yılmaz Osman Salih,Gülgen Fatih Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol.18, no.3, 2022, ss.309 - 319. 10.18466/cbayarfbe.1020070
AMA Ateş A,Yılmaz O,Gülgen F Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 2022; 18(3): 309 - 319. 10.18466/cbayarfbe.1020070
Vancouver Ateş A,Yılmaz O,Gülgen F Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 2022; 18(3): 309 - 319. 10.18466/cbayarfbe.1020070
IEEE Ateş A,Yılmaz O,Gülgen F "Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems." Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18, ss.309 - 319, 2022. 10.18466/cbayarfbe.1020070
ISNAD Ateş, Ali Murat vd. "Investigating the Effect of Shading on the Capacity Factor of Floating Photovoltaic Systems". Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18/3 (2022), 309-319. https://doi.org/10.18466/cbayarfbe.1020070