Yıl: 2022 Cilt: 10 Sayı: 8 Sayfa Aralığı: 1420 - 1425 Metin Dili: İngilizce DOI: 10.24925/turjaf.v10i8.1420-1425.5069 İndeks Tarihi: 03-10-2022

Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis

Öz:
Vitamin A is an essential micronutrient and has important functions such as vision, growth, reproduction embryogenesis, cellular differentiation, and proliferation, immune function and epithelial protector in the organism. Biotechnological production of vitamins is increasing due to their advantages and significant advances. The vitreoscilla hemoglobin (VHb) gene is extremely effective in binding oxygen and conducting it under hypoxic conditions. In this study, the production of vitamin A in E. herbicola (wild type) and its recombinant strains was investigated in LB medium and M9 medium (containing high concentrations (1%) of different carbon sources). The maximum production of vitamin A of the recombinant strain with the hemoglobin gene (vgb+) was observed in including glucose and sucrose M9 medium and their total product levels in vgb+ recombinant strain were 0.14 μg/ml and 0.1 μg/ml, respectively. The vitamin A production in the M9 medium with glucose and sucrose were 2-fold and 1.4- fold higher than that of the wild strain, respectively. The extracellular product level (0.07 μg/ml) in LB was 7-fold higher than wild strain at 48 h. These results reveal that the expression of VHb in E. herbicola in the both LB and M9 medium (containing 1% glucose and 1% sucrose, specially) increase the vitamin A production.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Anand A, Duk BT, Singh SK, Akbas MY. 2010. Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochemical Journal, 426: 271-280. doi: 10.1042/BJ20091417.
  • Berstenhorst SM, Hohmann HP, Stahmann KP. 2009. Vitamins and Vitamin-like Compounds: Microbial Production. Encyclopedia of Microbiology, 549-561. doi: 10.1016/B978- 012373944-5.00161-9.
  • Buddenhagen RE, Webster DA, Stark BC. 1996. Enhancement by bacterial hemoglobin of amylase production in recombinant E. coli occurs under conditions of low O2. Biotechnology Letters, 18: 695-700. doi:10.1007/BF00130768.
  • Chen HX, Chu J, Zhang S, Zhuang Y, Qian J, Wang Y, Hu X. 2007. Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris. Applied Microbiology and Biotechnology, 74: 1205-1212. doi: 10.1007/s00253-006-0705-y.
  • Chi PY, Webster DA, Stark BC. 2009. Vitreoscilla hemoglobin aids respiration under hypoxic conditions in its native host. Microbiological Research, 164: 267-75. doi.org/10.1016/ j.micres.2006.11.018.
  • Chien LJ, Chen HT, Yang PF, Lee CK. 2006. Enhancement of cellulose pellicle production by constitutively expressing Vitreoscilla hemoglobin in Acetobacter xylinum. Biotechnology Progress, 22: 1598-1603. doi: 10.1021/bp060 157g.
  • Chien LJ, Lee CK. 2007. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnology Progress, 23: 1017-1022. doi: 10.1021/bp070036w.
  • Dadon SBE, Reifen R. 2017. Vitamin A and the epigenome. Critical Reviews in Food Science and Nutrition, 57: 2404- 2411. doi.org/10.1080/10408398.2015.1060940.
  • Dikshit KL, Webster DA. 1988. Cloning, characterization and expression of the bacterial globin gene from vitreoscilla in Escherichia coli. Gene 70: 377-386. doi: 10.1016/0378- 1119(88)90209-0.
  • Dikshit KL, Spaulding D, Braun A, Webster DA. 1989. Oxygen ınhibition of globin gene-transcription and bacterial hemoglobin-synthesis in Vitreoscilla. Journal of General Microbiology, 135: 2601-2609. doi: 10.1099/00221287-135- 10-2601.
  • Du H, Shen X, Huang Y, Huang M, Zhang Z. 2016. Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. BMC Plant Biology, 16-35. doi: 10.1186/s12870-016-0728-1.
  • Gao R, Deng H, Guan Z, Liao X, Cai Y. 2018. Enhanced hypocrellin production via coexpression of alpha-amylase and hemoglobin genes in Shiraia bambusicola. AMB Express, 8: 71. doi:10.1186/s13568-018-0597-0.
  • Giray A. 2020. Production of Vitamin E in Erwinia herbicola Bearing the Vitreoscilla Hemoglobin Gene (vgb+). Journal of Pharmacy and Pharmacology, 8: 380-389. doi:10.17265/2328-2150/2020.12.003.
  • Giray A. 2021. Production of vitamin A and vitamin E: expression of vitreoscilla hemoglobin gene in Erwinia herbicola. Preparative Biochemistry and Biotechnology, 4:1- 9. doi: 10.1080/10826068.2021.2004548.
  • Kahraman H, Aytan E, Giray A, Özcan D. 2013. Phenazine Production in The Presence of Heavy Metals in Recombinant Erwinia herbicola Bearing the Hemoglobin Gene. Suleyman Demirel University Journal of Natural and Applied Science, 17: 11-16. doi: 10.19113/sdufbed.90976.
  • Kallio PT, Kim DJ, Tsai PS, Bailey JE. 1994. Intracellular expression of vitreoscilla hemoglobin alters escherichia-coli energy-metabolism under oxygen-limited conditions. European Journal of Biochemistry, 219: 201-208. doi: 10.1111/j.1432-1033.1994.tb19931.x.
  • Kurt AG, Aytan E, Ozer U, Ates B, Geckil H. 2009. Production of L-DOPA Biotechnology of Journal, and dopamine in bacteria bearing Vitreoscilla hemoglobin gene. 4(7): 1077- 1088. doi: 10.1002/biot.200900130.
  • Li HJ, He YL, Zhang DH, Yue TH, Jiang LX, Li N, Wu JW. 2016a. Enhancement of ganoderic acid production by constitutively expressing Vitreoscilla hemoglobin gene in Ganoderma lucidum. Journal of Biotechnology, 227: 35–40. doi: 10.1016/j.jbiotec.2016.04.017.
  • Li B, Li S, Zhou Y, Zhao X, Zhu B. 2006. Cloning and expression of Vitreoscilla hemoglobin gene (vgb) in Penicillium chrysogenum. Zhongguo Kangshengsu Zazhi 31: 400–402.
  • Li HJ, Zhang DH, Yue TH, Jiang LX, Yu X, Zhao P, Xu JW. 2016b. Improved polysaccharide production in a submerged culture of Ganoderma lucidum by the heterologous expression of Vitreoscilla hemoglobin gene. Journal of Biotechnology, 217: 132–137. doi: 10.1016/j.jbiotec. 2015.11.011.
  • Lin J, Zhang X, Song B, Xue W, Su X, Chen X, Dong Z. 2017. Improving cellulase production in submerged fermentation by the expression of a Vitreoscilla hemoglobin in Trichoderma reesei. AMB Express, 7: 203. doi: 10.1186/ s13568-017-0507-x.
  • Mejía A, Viniegra-González G, Barrios-González J. 2003. Biochemical mechanism of the effect of barbital on rifamycin B biosynthesis by Amycolatopsis mediterranei (M18 strain). Journal of Bioscience and Bioengineering, 95: 288–292. doi: 10.1016/S1389-1723(03)80031-2.
  • Mejía A, Luna D, Fernández FJ, Barrios Gonzalez J, Gutierrez- Gonzales LH, Rayes A, Kelly SL. 2018. Improving rifamycin production in Amycolatopsis mediterranei by expressing a Vitreoscilla hemoglobin (vhb) gene fused to a cytochrome P450 monooxygenase domain. Biotechonology, 8(11): 456. doi: 10.1007/s13205-018-1472-z.
  • Mora-Lugo R, Madrigal M, Yelemane V, Fernandez-Lahore M. 2015. Improved biomass and protein production in solid-state cultures of an Aspergillus sojae strain harboring the Vitreoscilla hemoglobin. Applied Microbiology and Biotechnology, 99: 9699–9708. doi: 10.1007/s00253-015- 6851-3.
  • Parlak AE, Celik S, Karatepe M, Koparir M. 2015. The effects of 5,5'-butane-1,4-diylbis {2- [(4-benzylpiperazin-1 yl) methyl]- 4-ethyl-2,4-dihydro-3h- 1,2,4-triazole-3-thione} on MDA level and vitamins in serum, liver and kidney of rats. NWSA- Physical Sciences 10(2): 29-36. doi:10.12739/NWSA. 2015.10.2.3A0070.
  • Revuelta JL, Buey RM, Ledesma-Amaro R, Vandamme EJ. 2016. Microbial biotechnology for the synthesis of (pro) vitamins, biopigments and antioxidants: challenges and opportunities. Microbial biotechnology, 95:564-567. doi:10.1111/1751- 7915.12379.
  • Sanny T, Arnaldos M, Kunkel SA, Pagilla KR, Stark BC. 2010. Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Applied Microbiology and Biotechnology, 88: 1103-1112. doi:10.1007/s00253-010-2817-7.
  • Stephensen CB. 2001. Vitamin A, infection, and immune function. Annual Review of Nutrition, 21: 167–192. doi: 10.1146/annurev.nutr.21.1.167.
  • Wang X, Ding Y, Gao X, Liu H, Zhao K, Gao Y, Qiu L. 2019. Promotion of the growth and plant biomass degrading enzymes production in solid-state cultures of Lentinula edodes expressing Vitreoscilla hemoglobin gene. Journal of Biotechnology, 302: 42–47. doi: 10.1016/j.jbiotec.2019. 06.301.
  • Wang S, Kamal R, Zhang Y, Zhou R, Lv L, Huang L, Zhao ZK. 2020. Expression of VHb Improved Lipid Production in Rhodosporidium toruloides. Energies, 13: 4446. doi:10.3390/ en13174446.
  • Wilson JR, Page DA, Welch D, Robeck A. 2016. Cell Culture Methods and Devices Utilizing Gas Permeable Materials. U.S. Patent.
  • Yuan P, Cui S, Liu Y, Li J, Guocheng D, Liu L. 2020. Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Applied Microbiology and Biotechnology, 104: 935–951. doi: 10.1007/s00253-019- 10157-x.
  • Zhang H, Feng Y, Cui Q, Song X. 2017. Expression of Vitreoscilla hemoglobin enhances production of arachidonic acid and lipids in Mortierella alpina. BMC Biotechnology, 17: 68. doi: 10.1186/s12896-017-0388-8.
  • Zhu H, Sun S, Zhang S. 2011. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius. Bioresource Technology Reports, 102: 1747–1751. doi: 10.1016/j.biortech. 2010.08.085.
  • Zhang S, Wang J, Wei Y, Tang Q, Ali MK, He J. 2014. Heterologous expression of VHb can improve the yield and quality of biocontrol fungus Paecilomyces lilacinus, during submerged fermentation. Journal of Biotechnology, 187: 147–153. doi: 10.1016/j.jbiotec.2014.07.438.
APA Giray A, SELÇUK PEKDEMİR S (2022). Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis. , 1420 - 1425. 10.24925/turjaf.v10i8.1420-1425.5069
Chicago Giray Asli,SELÇUK PEKDEMİR Sibel Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis. (2022): 1420 - 1425. 10.24925/turjaf.v10i8.1420-1425.5069
MLA Giray Asli,SELÇUK PEKDEMİR Sibel Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis. , 2022, ss.1420 - 1425. 10.24925/turjaf.v10i8.1420-1425.5069
AMA Giray A,SELÇUK PEKDEMİR S Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis. . 2022; 1420 - 1425. 10.24925/turjaf.v10i8.1420-1425.5069
Vancouver Giray A,SELÇUK PEKDEMİR S Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis. . 2022; 1420 - 1425. 10.24925/turjaf.v10i8.1420-1425.5069
IEEE Giray A,SELÇUK PEKDEMİR S "Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis." , ss.1420 - 1425, 2022. 10.24925/turjaf.v10i8.1420-1425.5069
ISNAD Giray, Asli - SELÇUK PEKDEMİR, Sibel. "Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis". (2022), 1420-1425. https://doi.org/10.24925/turjaf.v10i8.1420-1425.5069
APA Giray A, SELÇUK PEKDEMİR S (2022). Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 10(8), 1420 - 1425. 10.24925/turjaf.v10i8.1420-1425.5069
Chicago Giray Asli,SELÇUK PEKDEMİR Sibel Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 10, no.8 (2022): 1420 - 1425. 10.24925/turjaf.v10i8.1420-1425.5069
MLA Giray Asli,SELÇUK PEKDEMİR Sibel Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.10, no.8, 2022, ss.1420 - 1425. 10.24925/turjaf.v10i8.1420-1425.5069
AMA Giray A,SELÇUK PEKDEMİR S Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2022; 10(8): 1420 - 1425. 10.24925/turjaf.v10i8.1420-1425.5069
Vancouver Giray A,SELÇUK PEKDEMİR S Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2022; 10(8): 1420 - 1425. 10.24925/turjaf.v10i8.1420-1425.5069
IEEE Giray A,SELÇUK PEKDEMİR S "Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 10, ss.1420 - 1425, 2022. 10.24925/turjaf.v10i8.1420-1425.5069
ISNAD Giray, Asli - SELÇUK PEKDEMİR, Sibel. "Biotechnological Micronutrient Production: Recombinant DNA Technology- Based Vitamin A Synthesis". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 10/8 (2022), 1420-1425. https://doi.org/10.24925/turjaf.v10i8.1420-1425.5069