Yıl: 2021 Cilt: 8 Sayı: 1 Sayfa Aralığı: 202 - 219 Metin Dili: Türkçe DOI: 10.31202/ecjse.819457 İndeks Tarihi: 04-10-2022

Dövme Kalıplarında Aşınma Mekanizmaları

Öz:
Dövme yöntemi, tarihte bilinen en eski üretim yöntemlerinden biri olmakla birlikte günümüzde de imalat endüstrisinde sıklıkla kullanılmaktadır. 2019’da dünya geneline bakıldığında, dövme endüstrisinin gayri safi milli hasılaya etkisinin %20 olduğu görülmektedir. Dövme işleminin endüstriyel ekonomi, toplum ve ulusal güvenlik gibi kritik öneme sahip, yüksek mukavemet isteyen üretimi zorlu parçalar için kullanılan bir işlem olarak popülerliğini artıracağı öngörülmektedir. Dolayısıyla sektördeki firmaların imalat hatlarını, performanslarını ve ürün gamlarındaki kalitelerini geliştirmesi gerekmektedir. Dövme işleminde üretim performansını ve kalitesini etkileyen en önemli unsur ise dövme kalıplarında görülen hasarlardır. Literatür incelemelerinde dövme kalıplarındaki hasar sebeplerinin başında aşınmanın geldiği belirlenmiştir. Dolayısıyla kalıp malzemelerinin aşınma dayanımlarını geliştirmenin, sektör için elzem olduğu yadsınamaz bir gerçektir. Bu kapsamda geliştirilen en önemli yöntem malzeme yüzeylerinin sert bir tabaka ile kaplanması işlemidir. Özellikle Fiziksel Buhar Biriktirme (PVD) işlemi ile yüzeye kaplanan nitrür esaslı tabakaların, malzemelerin aşınma özelliklerine eşsiz katkılar sunduğu belirlenmiştir. Kaplanmış malzemenin aşınma performansı, laboratuvar ortamında üretimin çalışma prensibini yansıtacak şekilde aşınma düzenekleri kullanılarak belirlenmektedir. Ancak değerlendirmelerde, bu düzeneklerin dövme işlemini yansıtmada yetersiz kaldığı, dolayısıyla bulguların, mevcut işlem koşullarında değerlendirilmesinin uygun olmadığı düşünülmektedir. Bu doğrultuda, tespit edilen bu önemli eksikliğin giderilmesi amacıyla patent başvurusu da gerçekleştirilen, aşınma test cihazı tasarlanmış ve diğer düzeneklerin eksikliklerini nasıl gidereceği konusunda detaylı analiz verilmiştir.
Anahtar Kelime: Dövme imalat dövme kalıbı aşınma PVD

Wear Mechanisms in Forging Dies

Öz:
Although the forging is one of the oldest production method in history, it is frequently used in the manufacturing industry today. Looking at the world in 2019, it is seen that the impact of the forging industry on the gross national product (gnp) was 20%. It is predicted that the forging will increase its popularity as a process that is used for demanding parts that require high strength and are critical to industrial economy, society and national security. Therefore, companies in the sector need to improve their production lines, performance and quality in the product ranges. The most important factor affecting the production performance and quality in the forging process is the damage seen in the forging dies. In the literature reviews, it was determined that the leading cause of damage in forging die was wear. Therefore, it is an undeniable fact that improving the wear resistance of die materials is essential for the forging industry. The most important method developed in this context is the process of covering the material surface with a hard layer. Particularly, it has been determined that the nitride-based layers coated on the surface using Physical Vapor Deposition (PVD) provide unique contributions to the wear properties of the materials. The wear performance of the coated material is determined by using wear mechanisms in a laboratory environment to reflect the working principle of production. However, in the evaluations, it is considered that these devices are insufficient to reflect the forging process, so it is considered inappropriate to evaluate the findings under the current process conditions. In this direction, in order to eliminate this important deficiency, a wear test device which a patent application was also made was designed and detailed analysis was given on how to eliminate the deficiencies of other mechanisms.
Anahtar Kelime: Forging production forging die wear PVD

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Chen, S., Qin, Y., Chen, J. G., Choy, C-M., “A forging Method for Reducing Process Steps in the Forming of Automotive Fasteners”, International Journal of Mechanical Sciences, 2018, 137: 1-14.
  • [2]. Hartley, P., Pillinger, I., “Numerical Simulation of the Forging Process”, Computer Methods in Applied Mechanics and Engineering, 2006, 195 (48-49): 6676-6690Demir, H., Güllü, A., Taşlamada Parametrelerin Etkisi, Pamukkale Üniv. Müh. Bilimleri Dergisi, 2001, 7 (2), 189- 198.
  • [3]. Castro, G., Fernandez-Vicente, A., Cid, J., “Influence of the Nitriding Time in the Wear Behaviour of an AISI H13 Steel During a Crankshaft Forging Process”, Wear, 2007, 263 (7- 12): 1375-1385.
  • [4]. Harandi, S. E., Idris, M. S., Jafari, H., “Effect of Forging Process on Microstructure, Mechanical and Corrosion Properties of Biodegradable Mg–1Ca Alloy”, Materials & Design, 2011, 32 (5): 2596-2603.
  • [5]. Han, X., Hua, L., “Comparison Between Cold Rotary Forging and Conventional Forging”, Journal of Material Science and Technology, 2009, 23: 2668-2678.
  • [6]. Huang, S. H., Xing, H., Wang, G., “Intelligent Classification of the Drop Hammer Forming Process Method”, Int J Adv Manuf Technol, 2001, 18: 89-97.
  • [7]. www.forging.org (Erişim Tarihi: 10.10.2020)
  • [8]. Douglas, R., Kuhlmann, B., “Guidelines for Precision Hot Forging with Applications”, J Mat. Proces. Tehnology, 2000, 98: 182-188.
  • [9]. Nagahama, T., Enomae, S., “Cold- and Warm-Forging Press Developments and Applications”, J Mater. Process. Tehnology, 1992, 35 (3-4): 415-427.
  • [10]. Altan, T., Ngaile, G., Shen, G., “Cold and Hot Forging Fundamentals and Applications”, 1, Chang, Y-W., Materials Park, 44073-0002, Ohio, 2005.
  • [11]. Bay, N., “The State of the Art in Cold Forging Lubrication” J. Mater. Process. Tehnology, 1994, 46 (1-2): 19-40.
  • [12]. Zhang, Q., Felder, E., Bruschi, S., “Evaluation of friction Condition in Cold Forging by Using T-Shape Compression Test”, J. Mater. Process. Technology, 2009, 209 (17): 5720-5729.
  • [13]. Doege, E., Bohnsack, R., “Closed Die Technologies for Hot Forging”, J. Mater. Process. Technology, 2000, 98 )2): 165-170.
  • [14]. Panjan, P., Urankar, I., Navinsek, B., Tercelj, M., Turk, R., Cekada, M., M., Leskovsek, V., “Improvement of Hot Forging Tools with Duplex Treatment” Surface and Coatings Technology, 2002. 151-152: 505-509.
  • [15]. https://www.forging.org/producers-and-suppliers/technology/vision-of-the-future (Erişim Tarihi: 10.10.2020)
  • [16]. T.C. Kalkınma Bakanlığı On Birinci Kalkınma Planı (2019-2013), Ana Metal Sanayii Çalışma Grubu Raporu, Yayın No: KB: 3007, Ankara, 2018.
  • [17]. Abachi, S., Akkök, M., Gökler, M. İ., “Wear Analysis of Hot Forging Dies”, Tribology International, 2010, 43 (1-2): 467-473.
  • [18]. Kim, D. H., Lee, H. C., Kim, B. M., Kim, K. H., “Estimation of Die Service Life Against Plastic Deformation and Wear During Hot Forging Processes” J. Mater. Process. Technology, 2005, 166 (3): 373-380.
  • [19]. Rajiev, R., Sadagopan, P., Prakash, R. S., “Study on Investigation of Hot Forging Die Wear Analysis – An Industrial Case Study”, Materials Today Proceedings, 2020, 27 (3): 2752-2757.
  • [20]. Luo, S., Zhu, D., Hua, Lin, Qian, D., Yan, S., “Numerical Analysis of Die Wear Characteristics in Hot Forging of Titanium Alloy Turbine Blade” International Journal of Mechanical Sciences, 2017, 123: 260-270.
  • [21]. Han, X., Hua, L., “3D FE Modelling of Contact Pressure Response in Cold Rotary Forging”, Tribology International, 2013, 57: 115-123.
  • [22]. Abdelgnei, M. A., Omar, M. Z., Ghazali, M. J., Mohammed, M. N., Rashid, B., “Dry Sliding Wear Behaviour of Thixoformed Al-5.7Si-2Cu-0.3 Mg Alloys at High Temperatures Using Taguchi Method”, Wear, 2020, 442-443: 203134.
  • [23]. Ghazali, M. J., Rainforth, W. M., Jones, H., “The Wear of Wrought Aluminium Alloys Under Dry Sliding Conditions”, Tribology International, 2007, 40 (2): 160-169.
  • [24]. Gates, B., Road Ahead, Penguin Books, USA, 1996.
  • [25]. Aschauer, E., Riedl, H., Koller, C. M., Bolvardi, H., Arndt, M., P. Polcik, P., Maryhofer, P. H., “Adhesive Wear Formation on PVD Coated Tools Applied in hot Forming of AlSi Coated Steel Sheets” Wear, 2019, 430-431: 309-316.
  • [26]. Kara, L., Gahramanzade Asl, H., Karadayı, Ö., “The Effect of TiN, TiAlN, CrAlN, and TiAlN/TiSiN Coatings on the Wear Properties of AISI H13 Steel at Room Temperature” Surface Review and Letters, 2019, 26 (9): 1-14.
  • [27]. Kara, L., Özkan, D., Yağcı, M. B., Sulukan, E., Sert, Y., Sert, T. S., “Friction and Wear Behaviors of TiN Coatings under Dry and Vacuum Conditions”, Tribology Transactions, 2019, 62 (3): 362-373.
  • [28]. Uçar, K., Şen, U., “Friction and Wear Properties of T6 Treatment and As-Plated Duplex NiP/NiB Coatings on Az91d Magnesium Alloy” El-Cezer, Journal of Science and Engineering, 2019, 6 (1): 31-42.
  • [29]. Altuncu, E., Çil, G., Gel, M., “Spiral Kaynaklı Çelik Boruların Korozyona Karşı FBE Kaplamaların Test Ve Karakterizasyonu”, El-Cezeri Journal of Science and Engineering, 2020, 7 (2): 679-689.
  • [30]. Sert, Y., Küçükömeroğlu, T., Efeoğlu, İ., “Quantification of the Effects of Coating Parameters on the Properties of TiAlZrN Coatings”, Brilliant Engineering, 2020, 4: 1-8.
  • [31]. Momeni, S., Tillmann, W., “Investigation of the Self-Healing Sliding Wear Characteristics of NiTi-Based PVD Coatings on Tool Steel”, Wear, 2016, 368-369: 53-59.
  • [32]. Thakur, A., Gangopadhyay, S., “Influence of Tribological Properties on the Performance of Incoated, CVD and PVD Coated Tools in Machining of Incoloy 825”, Tribology International, 2016, 102: 198-212.
  • [33]. Duminica, F.-D., Belchi, R., Libralesso, L., Mercier, D., “Investigation of Cr(N)/DLC Multilayer Coatings Elaborated by PVD for High Wear Resistance and Low Friction Applications”, Surface and Coatings Technology, 2018, 337: 396-403.
  • [34]. Boing, D., Oliveira, A. J., Schroeter, R. B., “Limiting Conditions for Application of PVD (TiAlN) and CVD (TiCN/Al2O3/TiN) Coated Cemented Carbide Grades in the Turning of Hardened Steels, 2018, 416-417: 54-61.
  • [35]. Aninat, R., Valle, N., Chemin, J.-B., Duday, D., Michotte, C., Penoy, M., Bourgeois, L., Choquet, P., “Addition of Ta and Y in a Hard Ti-Al-N PVD Coating: Individual and Conjugated Effect on the Oxidation and Wear Properties”, Corrosion Science, 2019, 156: 171-180.
  • [36]. He, Q., Paiva, J. M., Kohlscheen, J., Beake, B. D., Veldhuis, S. C., “An Integrative Approach to Coating/Carbide Substrate Design of CVD and PVD Coated Cutting Tools During the Machining of Austenitic Stainless Steel”, Ceramics International, 2020, 46 (4): 5149-5158.
  • [37]. An, Q., Chen, J., Tao, Z., Ming, W., Chen, M., “Experimental Investigation on Tool Wear Characteristics of PVD and CVD Coatings During Face Milling of Ti-6242S and Ti-555 Titanium Alloys”, International Journal of Refractory Metals and Hard Materials, 2020, 86: 105091.
  • [38]. Koseki, S., Inoue, K., Morito, S., Ohba, T., Usuki, H., “Comparison of TiN-Coated Tools Using CVD and PVD Processes During Continuous Cutting of Ni-Based Superalloys”, Surface and Coatings Technology, 2015, 283: 353-363.
  • [39]. Kıvak, T., “Optimization of Surface Roughness and Flank Wear Using the Taguchi Method in Milling of Hadfield Steel with PVD and CVD Coated Inserts”, Measurement, 2014, 50: 19- 28.
  • [40]. Pellizzari, M., “High Temperature Wear and Friction Behaviour of Nitrided, PVD-Duplex and CVD Coated Tool Steel Against 6082 Al Alloy”, Wear, 2011, 271 (9-10): 2089-2099.
  • [41]. Tercelj, M., Panjan, P., Urankar, I., Fajfar, P., Turk, R., “A Newly Designed Laboratory Hot Forging Test for Evaluation of Coated Tool Wear Resistance”, Surface and Coatings Technology, 2006, 200 (11): 3594-3604.
  • [42]. Gronostajski, Z., Kaszuba, M., Widomski, P., Smolik, J., Ziemba, J., Hawryluk, M., “Analysis of Wear Mechanisms of Hot Forging Tools Protected with Hybrid Layers performed by Nitriding and PVD Coatings Deposition”, Wear, 2019, 420-421: 269-280.
  • [43]. Gronostajski, Z., Kaszuba, M., Polak, S., Zwierzchowski, M., Niechajowicz, A., Hawryluk, M., “The Failure Mechanisms of Hot Forging Dies”, Materials Science and Engineering: A, 2016, 657: 147-160.
  • [44]. https://www.uddeholm.com/en/applications/forging/ (Erişim Tarihi: 15.10.2020)
  • [45]. Meng, J., Shi, X., Zhang, S., Wang, M., Xue, F., Liu, B., Cui, W., Bian, L., “Friction and Wear Properties of TiN-TiB2-Ni Based Composite Coatings by Argon Arc Cladding Technology”, Surface and Coatings Technology, 2019, 374: 437-447.
  • [46]. Bobzin, K., Zhao, L., Öte, M., Königstein, T., Novel Fe-Based Wear and Corrosion Resistant Coatings by Three-Cathode Plasma Technology, Surface and Coatings Technology, 2017, 318: 288-292.
  • [47]. Gali, O. A., Shafiei, M., Hunter, J. A., Riahi, A. R., “The Tribological Behavior of PVD Coated Work Roll Surfaces During Rolling of Aluminum”, Surface and Coatings Technology, 2014, 260: 230-238.
  • [48]. Bandapalli, C., Sutaria, B. M., Bhatt, D. V. P., Singh, K. K., “Tool Wear Analysis of Micro End Mills - Uncoated and PVD Coated TiAlN & AlTiN in High Speed Micro Milling of Titanium Alloy - Ti-0.3Mo-0.8Ni”, Procedia CIRP, 2018, 77: 626-629.
  • [49]. Naskar, A., Chattopadhyay, A. K., Investigation on Flank Wear Mechanism of CVD and PVD Hard Coatings in High Speed Dry Turning of Low and High Carbon Steel, Wear, 2018, 396- 397: 98-106.
  • [50]. Skordaris, G., Bouzakis, K.-D., Charalampous, P., Kotsanis, T., Bouzakis, E., Bejjani, R., “Bias Voltage Effect on the Mechanical Properties, Adhesion and Milling Performance of PVD Films on Cemented Carbide Inserts”, Wear, 2018, 404-405: 50-61.
  • [51]. Bunshatta R. F., “High Rate Physical Vapour Deposition Processes”, Agard Lecture Series Material Coating Techniques, Hardford House, London, No: 106, 1980, s:21-26.
  • [52]. Jeffrey B.C., George, W., Scherer, “Sol-gel Science: The Physics and Chemistry of Sol-gel Processing”, Gulf Professional Publishing, San Diego, 1990.
  • [53]. Hasançebi, Ö., “Sol-gel Yöntemiyle Hazırlanan Bakır Oksit İnce Filmlerin Elektriksel, Yapısal ve Optiksel Özelliklerinin İncelenmesi”, Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, 2006.
  • [54]. İrizalp, S. G., Saklakoğlu, N., İldaş, G., Demirok, S., 1.2714 Çeliği Üzerine Sert Dolgu Kaynağı ile Kaplanmış Fe-Cr-V Esaslı Alaşımın Malzeme Özelliklerinin İncelenmesi, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2018, 33 (1): 35-46.
  • [55]. Wang, J.-B., Ren, Z., Hou, Y., Yan, X.-L., Liu, P.-Z., Zhang, H., Zhang, H.-X., Guo, J.-J., “A Review of Graphene Synthesisatlow Temperatures by CVD Methods”, New Carbon Materials, 2020, 35 (3): 193-208.
  • [56]. Lee, H., Song, M. Y., Jurng, J., Park, Y.-K., “The Synthesis and Coating Process of TiO2 Nanoparticles Using CVD Process”, Powder Technology, 2011, 214 (1): 64-68.
  • [57]. Öncel, Ç., Yürüm, Y., “Carbon Nanotube Synthesis via the Catalytic CVD Method: A Review on the Effect of Reaction Parameters”, Fullerenes, Nanotubes and Carbon Nanostructures, 2006 14 (1): 17-37.
  • [58]. Sert, Y., Nitrürlenmiş H13 Çeliği Yüzeyine Kaplanan TiAlZrN Tabakasının Tribolojik Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016.
  • [59]. https://www.titanit.com.tr/pvd-kaplama-teknolojimiz/ (Erişim Tarihi: 16.10.2020)
  • [60]. Kara, L., Sıçratma Yöntemiyle Kompozit TiAlCrNbN Kaplı H13 Çeliğinin Yapısal ve Tribolojik Özelliklerinin Araştırılması, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015.
  • [61]. Ghahramanzadeh Asl, H., Kara, L., Sert, Y., Sert, T. S., Küçükömeroğlu, T., “The Investigation of Wear Properties of TiN Coatings on the H13 Tool Steel Under Different Deposition Parameters”, Engineering Sciences, 2018, 13 (4): 316-323.
  • [62]. Ramadoss, R., Kumar, N., Pandian, R., Dash, S., Ravindran, T. R., Arivuoli, D., Tyagi, A. K., “Tribological Properties and Deformation Mechanism of TiAlN Coating Sliding with Various Counterbodies”, Tribology International, 2013, 66: 143-149.
  • [63]. Qi, Z. B., Sun, P., Zhu, F. P., Wu, Z. T., Liu, B., Wang, Z. C., Peng, D. L., Wu, C. H., “Relationship Between Tribological Properties and Oxidation Behavior of Ti0.34Al0.66N Coatings at Elevated Temperature up to 900°C”, Surface and Coatings Technology, 2013, 231: 267-272.
  • [64]. Yao, S., Hung, S., Su, Y., Kao, W., “Effects of Aluminum Content on Oxidation Behavior of W-Al Nanolayer Coatings”, Tribology Engineering, 2015, 642: 130-134.
  • [65]. Lin, J., Zhang, X., Ou, Y., Wei, R., “The Structure, Oxidation Resistance, Mechanical and Tribological Properties of CrTiAlN Coatings”, Surface and Coatings Technology, 2015, 277: 58–66.
  • [66]. Barshilia, H. C., Yogesh, K., Rajam, K. S., “Deposition of TiAlN Coatings Using Reactive Bipolar-Pulsed Direct Current Unbalanced Magnetron Sputtering”, Vacuum, 2008, 83(2): 427-434.
  • [67]. Hörling, A., Hultman, L., Odén, M., Sjölén, J., Karlsson, L., “Mechanical Properties and Machining Performance of Ti1−xAlxN-Coated Cutting Tools”, Surface and Coatings Technology, 2005, 191 (2–3): 384-392.
  • [68]. Chakrabarti, K., Jeong, J. J., Hwang, S. K., Yoo, Y. C., Lee, C. M., “Effects of Nitrogen Flow Rates on the Growth Morphology of TiAlN Films Prepared by an Rf-Reactive Sputtering Technique”, Thin Solid Films, 2002, 406 (1–2): 159-163.
  • [69]. Pemmasani, S. P., Valleti, K., Gundakaram, R. C., Rajulapati, K. V., Mantripragada, R., Koppoju, S., Joshi, S. V., “Effect of Microstructure and Phase Constitution on Mechanical Properties of Ti1−xAlxN Coatings”, Applied Surface Science, 2014, 313: 936-946.
  • [70]. Chang, C.-L., Lee, J.-W., Tseng, M.-D., “Microstructure, Corrosion and Tribological Behaviors of TiAlSiN Coatings Deposited by Cathodic Arc Plasma Deposition”, Thin Solid Films, 2009, 517 (17): 5231-5236.
  • [71]. Chang, Y.-Y., Lai, H.-M., “Wear Behavior and Cutting Performance of CrAlSiN and TiAlSiN Hard Coatings on Cemented Carbide Cutting Tools for Ti Alloys”, Surface and Coatings Technology", 2014, 259: 152-158.
  • [72]. Barshilia, H. C., Ghosh, M., Shashidhara, Ramakrishna, R., Rajam, K. S., “Deposition and Characterization of TiAlSiN Nanocomposite Coatings Prepared by Reactive Pulsed Direct Current Unbalanced Magnetron Sputtering”, Applied Surface Science, 2010, 256 (21): 6420- 6426.
  • [73]. Sert Y, Küçükömeroğlu T, Efeoğlu İ., “Investigating the Structure, Adhesion and Tribological Properties of Al and Zr-doped TiN Coatings with Various Substrate Bias Voltage and Working Pressure”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, July 2020. doi:10.1177/1350650120940071.
  • [74]. Cao, X., Xu, W., He, W., “A Method for Evaluating the Impact Wear Behavior of Multilayer TiN/Ti Coating”, Coatings, 2020, 10 (2): 132. https://doi:10.3390/coatings10020132
  • [75]. Tan, D.-Q., Mo, J.-L., He, W.-F., Luo, J., Zhang, Q., Zhu, M.-H., Zhou, Z.-R., “Suitability of Laser Shock Peening to Impact-Sliding Wear in Different System Stiffnesses”, Surface and Coatings Technology, 2019, 358: 22-35.
  • [76]. Chen, Y., Nie, X., Leyland, A., Housden, J., Matthews, A., “Substrate and Bonding Layer Effects on Performance of DLC and TiN Biomedical Coatings in Hank's Solution Under Cyclic Impact–Sliding Loads”, Surface and Coatings Technology, 2013, 237: 219-229.
APA SERT Y, YEŞİLYURT M, GÜNAYDIN O, EMİR L, Küçükömeroğlu T (2021). Dövme Kalıplarında Aşınma Mekanizmaları. , 202 - 219. 10.31202/ecjse.819457
Chicago SERT Yaşar,YEŞİLYURT MUSTAFA,GÜNAYDIN OSMAN,EMİR Levent Taylan,Küçükömeroğlu Tevfik Dövme Kalıplarında Aşınma Mekanizmaları. (2021): 202 - 219. 10.31202/ecjse.819457
MLA SERT Yaşar,YEŞİLYURT MUSTAFA,GÜNAYDIN OSMAN,EMİR Levent Taylan,Küçükömeroğlu Tevfik Dövme Kalıplarında Aşınma Mekanizmaları. , 2021, ss.202 - 219. 10.31202/ecjse.819457
AMA SERT Y,YEŞİLYURT M,GÜNAYDIN O,EMİR L,Küçükömeroğlu T Dövme Kalıplarında Aşınma Mekanizmaları. . 2021; 202 - 219. 10.31202/ecjse.819457
Vancouver SERT Y,YEŞİLYURT M,GÜNAYDIN O,EMİR L,Küçükömeroğlu T Dövme Kalıplarında Aşınma Mekanizmaları. . 2021; 202 - 219. 10.31202/ecjse.819457
IEEE SERT Y,YEŞİLYURT M,GÜNAYDIN O,EMİR L,Küçükömeroğlu T "Dövme Kalıplarında Aşınma Mekanizmaları." , ss.202 - 219, 2021. 10.31202/ecjse.819457
ISNAD SERT, Yaşar vd. "Dövme Kalıplarında Aşınma Mekanizmaları". (2021), 202-219. https://doi.org/10.31202/ecjse.819457
APA SERT Y, YEŞİLYURT M, GÜNAYDIN O, EMİR L, Küçükömeroğlu T (2021). Dövme Kalıplarında Aşınma Mekanizmaları. El-Cezerî Journal of Science and Engineering, 8(1), 202 - 219. 10.31202/ecjse.819457
Chicago SERT Yaşar,YEŞİLYURT MUSTAFA,GÜNAYDIN OSMAN,EMİR Levent Taylan,Küçükömeroğlu Tevfik Dövme Kalıplarında Aşınma Mekanizmaları. El-Cezerî Journal of Science and Engineering 8, no.1 (2021): 202 - 219. 10.31202/ecjse.819457
MLA SERT Yaşar,YEŞİLYURT MUSTAFA,GÜNAYDIN OSMAN,EMİR Levent Taylan,Küçükömeroğlu Tevfik Dövme Kalıplarında Aşınma Mekanizmaları. El-Cezerî Journal of Science and Engineering, vol.8, no.1, 2021, ss.202 - 219. 10.31202/ecjse.819457
AMA SERT Y,YEŞİLYURT M,GÜNAYDIN O,EMİR L,Küçükömeroğlu T Dövme Kalıplarında Aşınma Mekanizmaları. El-Cezerî Journal of Science and Engineering. 2021; 8(1): 202 - 219. 10.31202/ecjse.819457
Vancouver SERT Y,YEŞİLYURT M,GÜNAYDIN O,EMİR L,Küçükömeroğlu T Dövme Kalıplarında Aşınma Mekanizmaları. El-Cezerî Journal of Science and Engineering. 2021; 8(1): 202 - 219. 10.31202/ecjse.819457
IEEE SERT Y,YEŞİLYURT M,GÜNAYDIN O,EMİR L,Küçükömeroğlu T "Dövme Kalıplarında Aşınma Mekanizmaları." El-Cezerî Journal of Science and Engineering, 8, ss.202 - 219, 2021. 10.31202/ecjse.819457
ISNAD SERT, Yaşar vd. "Dövme Kalıplarında Aşınma Mekanizmaları". El-Cezerî Journal of Science and Engineering 8/1 (2021), 202-219. https://doi.org/10.31202/ecjse.819457