Yıl: 2022 Cilt: 7 Sayı: 3 Sayfa Aralığı: 231 - 249 Metin Dili: İngilizce DOI: 10.47481/jscmt.1136018 İndeks Tarihi: 05-10-2022

A review on engineering biocomposites and natural fiber-reinforced materials

Öz:
Fiber-reinforced polymer composites are well-studied and established products and today they are being used in different industrial and non-industrial areas. However, the increased interest in recyclability and the concerns about climate change caused materials scientists to look for a non-petroleum-based alternative to synthetic fibers and polymers. Since the beginning of this century, natural fibers and biopolymers have seen an increased interest each year for composite applications. Thanks to this interest, the studies on natural fibers and biopolymers have increased significantly. Despite the high number of studies on natural fibers and natural fiber-reinforced polymers (NFRP), there are gaps in the literature. This work reviews the studies on natural fibers, biopolymers, and biocomposites with their advantages, disadvantages, and limitations. The studies that focus on the ways to reduce or eliminate these disadvantages and limitations have also been looked at. Also, current challenges and future perspectives for natural fibers, biopolymers, and NFRPs have been discussed.
Anahtar Kelime: Natural fibers Biopolymers Biocomposites Green composites

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] Chawla, K. K., (2015). Composite materials science and engineering (3rd ed). Springer.
  • [2] Monteiro, S. N., Lopes, F. P. D., Ferreira, A. S., & Nascimento, D. C. O. (2009). Natural-fiber poly- mer-matrix composites: cheaper, tougher, and en- vironmentally friendly. The Journal of The Minerals, Metals & Materials Society, 61(1), 17–22. [CrossRef]
  • [3] Joshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. (2004). Are natural fiber composites environmen- tally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufactur- ing, 35(3), 371–376. [CrossRef]
  • [4] Ahmad, F., Choi, H. S., & Park, M. K. (2015). A re- view: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering, 300(1), 10–24. [CrossRef]
  • [5] Arockiam, N. J., Jawaid, M., & Saba, N. (2018). Sus- tainable bio composites for aircraft components. In Sustainable Composites for Aerospace Applications (pp. 109–123). Woodhead Publishing. [CrossRef]
  • [6] Pickering, K. L., Beckermann, G. W., Alam, S. N., & Foreman, N. J. (2007). Optimising industrial hemp fibre for composites. Composites Part A: Applied Sci- ence and Manufacturing, 38(2), 461–468. [CrossRef]
  • [7] Wang, Y. N., Weng, Y. X., & Wang, L. (2014). Char- acterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polymer Testing, 36, 119–125. [CrossRef]
  • [8] Kozłowski, R., & Władyka Przybylak, M. (2008). Flammability and fire resistance of composites reinforced by natural fibers. Polymers for Advanced Tech- nologies, 19(6), 446–453. [CrossRef]
  • [9] Mohanty, A. K., Misra, M., & Drzal, L. T. (Eds.). (2005). Natural fibers, biopolymers, and biocompos- ites. CRC Press.
  • [10] Guna, V., Ilangovan, M., Ananthaprasad, M. G., & Reddy, N. (2018). Hybrid biocomposites. Polymer Composites, 39, E30–E54. [CrossRef]
  • [11] Mitra, B. C. (2014). Environment friendly compos- ite materials: biocomposites and green composites. Defence Science Journal, 64(3), 244–261. [CrossRef]
  • [12] La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579– 588. [CrossRef]
  • [13] Ray, D. (Ed.). (2017). Biocomposites for high-per - formance applications: Current barriers and future needs towards industrial development. Woodhead Publishing.
  • [14] Campilho, R. D. (Ed.). (2015). Natural fiber compos- ites. CRC Press. [CrossRef]
  • [15] Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, H., Abdul Khalil, P. S., Salema, A. A., & Inuwa, I. (2013). Potential materials for food packaging from nano- clay/natural fibres filled hybrid composites. Materi- als & Design, 46, 391–410. [CrossRef]
  • [16] Barbero, E. J. (2017). Introduction to composite mate- rials design. CRC Press.
  • [17] Townsend, T. (2020). World natural fibre produc- tion and employment. In Handbook of Natural Fibres (pp. 15–36). Woodhead Publishing. [CrossRef]
  • [18] Wei, L., & McDonald, A. G. (2016). A review on grafting of biofibers for biocomposites. Materials, 9(4), Article 303. [CrossRef]
  • [19] Ilyas, R. A., Sapuan, S. M., Kadier, A., Kalil, M. S., Ibrahim, R., Atikah, M. S. N., & Ibrahim, M. I. J. (2020). Properties and characterization of PLA, PHA, and other types of biopolymer composites. In Advanced processing, properties, and applications of starch and other bio-based polymers (pp. 111– 138). Elsevier. [CrossRef]
  • [20] Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fi- bers: 2000–2010. Progress in Polymer Science, 37(11), 1552–1596. [CrossRef]
  • [21] Nick, A., Becker, U., & Thoma, W. (2002). Improved acoustic behavior of interior parts of renewable re- sources in the automotive industry. Journal of Poly- mers & the Environment, 10(3), 115–118. [CrossRef]
  • [22] Yilmaz, N. D., Powell, N. B., Banks-Lee, P., & Michielsen, S. (2013). Multi-fiber needle-punched non-woven composites: effects of heat treatment on sound absorption performance. Journal of Industrial Textiles, 43(2), 231–246. [CrossRef]
  • [23] Oldham, D. J., Egan, C. A., & Cookson, R. D. (2011). Sustainable acoustic absorbers from the biomass. Applied Acoustics, 72(6), 350–363. [CrossRef]
  • [24] Corbin, A. C., Soulat, D., Ferreira, M., Labanieh, A. R., Gabrion, X., Malécot, P., & Placet, V. (2020). Towards hemp fabrics for high-performance composites: Influence of weave pattern and fea- tures. Composites Part B: Engineering, 181, Article 107582. [CrossRef]
  • [25] Bonnafous, C., Touchard, F., & Chocinski-Arnault, L. (2011). Damage mechanisms in hemp-fibre wo- ven fabric composite, and comparison with glass-fi- bre composite. Polymers and Polymer Composites, 19(7), 543–552. [CrossRef]
  • [26] Hasan, K. F., Horváth, P. G., Zsolt, K., Kóczán, Z., Bak, M., Horváth, A., & Alpár, T. (2021). Hemp/ glass woven fabric reinforced laminated nanocom- posites via in-situ synthesized silver nanoparticles from Tilia cordata leaf extract. Composite Interfaces, 29(5), 503–521. [CrossRef]
  • [27] Berhanu Yallew, T., Kumar, P., & Singh, I. (2015). Sliding behaviour of woven industrial hemp fab- ric reinforced thermoplastic polymer composites. International Journal of Plastics Technology, 19(2), 347–362. [CrossRef]
  • [28] Baghaei, B., & Skrifvars, M. (2016). Characterisa- tion of polylactic acid biocomposites made from prepregs composed of woven polylactic acid/ hemp–lyocell hybrid yarn fabrics. Composites Part A: Applied Science and Manufacturing, 81, 139– 144. [CrossRef]
  • [29] Hargitai, H., Rácz, I., & Anandjiwala, R. D. (2008). Development of hemp fiber reinforced polypropyl- ene composites. Journal of Thermoplastic Composite Materials, 21(2), 165–174. [CrossRef]
  • [30] Shahzad, A. (2013). A study in physical and me- chanical properties of hemp fibres. Advances in Ma- terials Science and Engineering, 2013, Article 325085. [CrossRef]
  • [31] Stelea, L., Filip, I., Lisa, G., Ichim, M., Drobotă, M., Sava, C., & Mureșan, A. (2022). Characterisation of hemp fibres reinforced composites using thermo- plastic polymers as matrices. Polymers, 14(3), Arti- cle 481. [CrossRef]
  • [32] Chen, Y., Sun, L., Negulescu, I., Wu, Q., & Hender- son, G. (2007). Comparative study of hemp fiber for non-woven composites. Journal of Industrial Hemp, 12(1), 27–45. [CrossRef]
  • [33] Stapulionienė, R., Vaitkus, S., & Vėjelis, S. (2017). Investigation of mechanical properties of composite made from hemp and polylactide. In Key Engineer- ing Materials (Vol. 721, pp. 63–67). Trans Tech Pub- lications Ltd. [CrossRef]
  • [34] Rasyid, M. A., Salim, M. S., Akil, H. M., Karger-Koc-sis, J., & Ishak, Z. M. (2019). Non-woven flax fibre reinforced acrylic based polyester composites: the effect of sodium silicate on mechanical, flammabil- ity and acoustic properties. Express Polymer Letters, 13(6), 553–564. [CrossRef]
  • [35] Velayutham, T., Manickam, R. K., Sundararajan, P., Chung, I. M., & Prabakaran, M. (2021). A study on the effect of natural regenerated and synthet- ic non-woven fabric properties on acoustic appli- cations. Journal of Natural Fibers, [E pub ahead of print] doi: 10.1080/15440478.2021.1929645 [Cross- Ref]
  • [36] Muthukumar, N., Thilagavathi, G., Neelakrishnan, S., & Poovaragan, P. T. (2019). Sound and thermal insulation properties of flax/low melt PET needle punched non-wovens. Journal of Natural Fibers, 16(2), 245–252. [CrossRef]
  • [37] Pil, L., Bensadoun, F., Pariset, J., & Verpoest, I. (2016). Why are designers fascinated by flax and hemp fibre composites? Composites Part A: Applied Science and Manufacturing, 83, 193–205. [CrossRef]
  • [38] Shahria, S. (2019). Fabrication and property evalu- ation of hemp–flax fiber reinforced hybrid compos- ite. Cellulose, 7(2), 17–23. [CrossRef]
  • [39] Maity, S., Gon, D. P., & Paul, P. (2014). A review of flax non-wovens: Manufacturing, properties, and applications. Journal of Natural Fibers, 11(4), 365– 390. [CrossRef]
  • [40] John, M. J., & Anandjiwala, R. D. (2009). Chemi- cal modification of flax reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 40(4), 442–448. [CrossRef]
  • [41] Omrani, F., Wang, P., Soulat, D., Ferreira, M., & Ouagne, P. (2017). Analysis of the deformability of flax-fibre non-woven fabrics during manufacturing. Composites Part B: Engineering, 116, 471–485. [Cross- Ref]
  • [42] Bachmann, J., Wiedemann, M., & Wierach, P. (2018). Flexural mechanical properties of hybrid epoxy composites reinforced with non-woven made of flax fibres and recycled carbon fibres. Aerospace, 5(4), Article 107. [CrossRef]
  • [43] Alimuzzaman, S., Gong, R. H., & Akonda, M. (2013). Non-woven polylactic acid and flax biocomposites. Polymer Composites, 34(10), 1611–1619. [CrossRef]
  • [44] Claramunt, J., Ventura, H., Fernández-Carrasco, L. J., & Ardanuy, M. (2017). Tensile and flexural properties of cement composites reinforced with flax nonwoven fabrics. Materials, 10(2), Article 215. [CrossRef]
  • [45] Gonzalez-Lopez, L., Claramunt, J., Hsieh, Y. L., Ventura, H., & Ardanuy, M. (2020). Surface modi- fication of flax non-wovens for the development of sustainable, high performance, and durable calcium aluminate cement composites. Composites Part B: Engineering, 191, Article 107955. [CrossRef]
  • [46] Phongam, N., Dangtungee, R., & Siengchin, S. (2015). Comparative studies on the mechanical properties of nonwoven-and woven-flax-fiber-re- inforced Poly (butylene adipate-co-terephthal- ate)-based composite laminates. Mechanics of Com- posite Materials, 51(1), 17–24. [CrossRef]
  • [47] Awais, H., Nawab, Y., Anjang, A., Akil, H. M., & Abidin, M. (2020). Mechanical properties of con- tinuous natural fibres (jute, hemp, flax) reinforced polypropylene composites modified with hollow glass microspheres. Fibers and Polymers, 21(9), 2076–2083. [CrossRef]
  • [48] Goutianos, S., Peijs, T., Nystrom, B., & Skrifvars, M. (2006). Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials, 13(4), 199–215. [CrossRef]
  • [49] Charlet, K., Jernot, J. P., Gomina, M., Bizet, L., & Bréard, J. (2010). Mechanical properties of flax fi- bers and of the derived unidirectional composites. Journal of Composite Materials, 44(24), 2887–2896. [CrossRef]
  • [50] Couture, A., Lebrun, G., & Laperrière, L. (2016). Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Composite Structures, 154, 286– 295. [CrossRef]
  • [51] Tanguy, M., Bourmaud, A., Beaugrand, J., Gaudry, T., & Baley, C. (2018). Polypropylene reinforcement with flax or jute fibre; Influence of microstructure and constituents properties on the performance of composite. Composites Part B: Engineering, 139, 64– 74. [CrossRef]
  • [52] Mak, K., & Fam, A. (2020). The effect of wet-dry cy- cles on tensile properties of unidirectional flax fiber reinforced polymers. Composites Part B: Engineer- ing, 183, Article 107645. [CrossRef]
  • [53] Loong, M. L., & Cree, D. (2018). Enhancement of mechanical properties of bio-resin epoxy/flax fiber composites using acetic anhydride. Journal of Poly- mers and the Environment, 26(1), 224–234. [CrossRef]
  • [54] Alzeer, M., & MacKenzie, K. (2013). Synthesis and mechanical properties of novel composites of inor- ganic polymers (geopolymers) with unidirectional natural flax fibres (phormium tenax). Applied Clay Science, 75, 148–152. [CrossRef]
  • [55] Zhang, Y., Li, Y., Ma, H., & Yu, T. (2013). Tensile and interfacial properties of unidirectional flax/glass fi- ber reinforced hybrid composites. Composites Sci- ence and Technology, 88, 172–177. [CrossRef]
  • [56] Sarasini, F., Tirillò, J., D'Altilia, S., Valente, T., San- tulli, C., Touchard, F., & Gaudenzi, P. (2016). Dam- age tolerance of carbon/flax hybrid composites subjected to low velocity impact. Composites Part B: Engineering, 91, 144–153. [CrossRef]
  • [57] Chaudhary, V., Bajpai, P. K., & Maheshwari, S. (2018). Studies on mechanical and morphological characterization of developed jute/hemp/flax rein- forced hybrid composites for structural applications. Journal of Natural Fibers, 15(1), 80–97. [CrossRef]
  • [58] Boccarusso, L., De Fazio, D., & Durante, M. (2021). Production of PP composites reinforced with flax and hemp woven mesh fabrics via compression molding. Inventions, 7(1), Article 5. [CrossRef]
  • [59] Shahzad, A. (2011). Impact and fatigue properties of hemp–glass fiber hybrid biocomposites. Journal of Reinforced Plastics and Composites, 30(16), 1389– 1398. [CrossRef]
  • [60] Munoz, E., & García-Manrique, J. A. (2015). Water absorption behaviour and its effect on the mechani- cal properties of flax fibre reinforced bioepoxy com- posites. International Journal of Polymer Science, 2015, Article 390275.
  • [61] Manfredi, L. B., Rodríguez, E. S., Wladyka-Przyby- lak, M., & Vázquez, A. (2006). Thermal degradation and fire resistance of unsaturated polyester, modi- fied acrylic resins and their composites with natu- ral fibres. Polymer Degradation and Stability, 91(2), 255–261. [CrossRef]
  • [62] Kumar, A. P., Singh, R. P., & Sarwade, B. D. (2005). Degradability of composites, prepared from eth- ylene–propylene copolymer and jute fiber under ac- celerated aging and biotic environments. Materials Chemistry and Physics, 92(2–3), 458–469. [CrossRef]
  • [63] Sarkar, S., & Adhikari, B. (2001). Jute felt composite from lignin modified phenolic resin. Polymer Com- posites, 22(4), 518–527. [CrossRef]
  • [64] Das, B. K., Ray, P. K., & Chakravarty, A. C. (1983). 37—The properties of jute fibres at different stages of plant growth. Journal of the Textile Institute, 74(6), 367–373. [CrossRef]
  • [65] Wu, Y., Xia, C., Cai, L., Garcia, A. C., & Shi, S. Q. (2018). Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmen- tal impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production, 184, 92–100. [CrossRef]
  • [66] Suizu, N., Uno, T., Goda, K., & Ohgi, J. (2009). Ten- sile and impact properties of fully green composites reinforced with mercerized ramie fibers. Journal of Materials Science, 44(10), 2477–2482. [CrossRef]
  • [67] Qiu, R., Ren, X., Fifield, L. S., Simmons, K. L., & Li, K. (2011). Hemp fiber reinforced unsaturated poly- ester composites: Optimization of processing and improvement of interfacial adhesion. Journal of Ap- plied Polymer Science, 121(2), 862–868. [CrossRef]
  • [68] Lu, N., Oza, S., & Ferguson, I. (2012). Effect of al- kali and silane treatment on the thermal stability of hemp fibers as reinforcement in composite struc- tures. In Advanced Materials Research (Vol. 415, pp. 666–670). Trans Tech Publications Ltd. [CrossRef]
  • [69] Oh, J. T., Hong, J. H., Ahn, Y., & Kim, H. (2012). Re- liability improvement of hemp based bio-composite by surface modification. Fibers and Polymers, 13(6), 735–739. [CrossRef]
  • [70] Islam, M. S., Pickering, K. L., & Foreman, N. J. (2011). Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/ epoxy composites. Journal of Applied Polymer Sci- ence, 119(6), 3696–3707. [CrossRef]
  • [71] Väisänen, T., Batello, P., Lappalainen, R., & Tomp- po, L. (2018). Modification of hemp fibers (Canna- bis Sativa L.) for composite applications. Industrial Crops and Products, 111, 422–429. [CrossRef]
  • [72] Sullins, T., Pillay, S., Komus, A., & Ning, H. (2017). Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering, 114, 15–22. [CrossRef]
  • [73] Bledzki, A. K., Reihmane, S. A., & Gassan, J. (1998). Thermoplastics reinforced with wood fillers: a liter- ature review. Polymer-Plastics Technology and En- gineering, 37(4), 451–468. [CrossRef]
  • [74] Schirp, A., & Stender, J. (2010). Properties of ex- truded wood-plastic composites based on refiner wood fibres (TMP fibres) and hemp fibres. European Journal of Wood and Wood Products, 68(2), 219–231. [CrossRef]
  • [75] Niu, P., Liu, B., Wei, X., Wang, X., & Yang, J. (2011). Study on mechanical properties and thermal stabili- ty of polypropylene/hemp fiber composites. Journal of Reinforced Plastics and Composites, 30(1), 36–44. [CrossRef]
  • [76] Merotte, J., Le Duigou, A., Kervoelen, A., Bourmaud, A., Behlouli, K., Sire, O., & Baley, C. (2018). Flax and hemp non-woven composites: The contribution of interfacial bonding to improving tensile properties. Polymer Testing, 66, 303–311. [CrossRef]
  • [77] Yan, Z. L., Wang, H., Lau, K. T., Pather, S., Zhang, J. C., Lin, G., & Ding, Y. (2013). Reinforcement of polypropylene with hemp fibres. Composites Part B: Engineering, 46, 221–226. [CrossRef]
  • [78] Talla, A. F., Mfoumou, E., Jeson, S., Pagé, J. S. Y. D., & Erchiqui, F. (2013). Mechanical and structural prop- erties of a novel melt processed PET–hemp com- posite: Influence of additives and fibers concentra- tion. Journal of Reinforced Plastics and Composites, 32(20), 1526–1533. [CrossRef]
  • [79] Brostow, W., & Hagg Lobland, H. E. (2010). Brittle- ness of materials: implications for composites and a relation to impact strength. Journal of Materials Science, 45(1), 242–250. [CrossRef]
  • [80] Glória, G. O., Margem, F. M., Ribeiro, C. G. D., Moraes, Y. M. D., Cruz, R. B. D., Silva, F. D. A., & Monteiro, S. N. (2015). Charpy impact tests of ep- oxy composites reinforced with giant bamboo fibers. Materials Research, 18, 178–184. [CrossRef]
  • [81] Assis, F. S., Monteiro, S. N., Margem, F. M., & Loiola, R. L. (2014). Charpy toughness behavior of contin- uous banana fiber reinforced epoxy matrix compos- ites. Characterization of Minerals, Metals, and Mate- rials, 2014, 499–506. [CrossRef]
  • [82] Pereira, A. C., Monteiro, S. N., de Assis, F. S., Mar- gem, F. M., da Luz, F. S., & de Oliveira Braga, F. (2017). Charpy impact tenacity of epoxy matrix composites reinforced with aligned jute fibers. Jour- nal of Materials Research and Technology, 6(4), 312– 316. [CrossRef]
  • [83] Reddy, P. V., Reddy, R. S., Rajendra Prasad, P., Moha- na Krishnudu, D., Reddy, R. M., & Rao, H. R. (2022). Evaluation of mechanical and wear performances of natural fiber reinforced epoxy composites. Journal of Natural Fibers, 19(6), 2218–2231. [CrossRef]
  • [84] Al-Oqla, F. M. (2021). Flexural characteristics and impact rupture stress investigations of sustainable green olive leaves bio-composite materials. Journal of Polymers and the Environment, 29(3), 892–899. [CrossRef]
  • [85] Hassan, T., Jamshaid, H., Mishra, R., Khan, M. Q., Petru, M., Novak, J., Choteborsky, R., & Hromasova, M. (2020). Acoustic, mechanical and thermal prop- erties of green composites reinforced with natural fibers waste. Polymers, 12(3), Article 654. [CrossRef]
  • [86] Liang, Z., Wu, H., Liu, R., & Wu, C. (2021). Prepa- ration of long sisal fiber-reinforced polylactic acid biocomposites with highly improved mechanical performance. Polymers, 13(7), Article 1124. [CrossRef]
  • [87] Petrucci, R., Santulli, C., Puglia, D., Nisini, E., Saras- ini, F., Tirillò, J., & Kenny, J. M. (2015). Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in com- bination with flax, hemp and glass fibres manufac- tured by vacuum infusion. Composites Part B: Engi- neering, 69, 507–515. [CrossRef]
  • [88] Kong, K., Hejda, M., Young, R. J., & Eichhorn, S. J. (2009). Deformation micromechanics of a model cellulose/glass fibre hybrid composite. Composites Science and Technology, 69(13), 2218–2224. [CrossRef]
  • [89] Clark, R. A., & Ansell, M. P. (1986). Jute and glass fibre hybrid laminates. Journal of Materials Science, 21(1), 269–276. [CrossRef]
  • [90] Sanjay, M. R., & Yogesha, B. (2017). Studies on nat- ural/glass fiber reinforced polymer hybrid compos- ites: An evolution. Materials Today: Proceedings, 4(2), 2739–2747.
  • [91] Das, P. P., & Chaudhary, V. (2021). Moving to- wards the era of bio fibre based polymer compos- ites. Cleaner Engineering and Technology, 4, Article 100182. [CrossRef]
  • [92] Rafiee, K., Schritt, H., Pleissner, D., Kaur, G., & Brar, S. K. (2021). Biodegradable green composites: It's never too late to mend. Current Opinion in Green and Sustainable Chemistry, 30, Article 100482. [CrossRef]
  • [93] Vázquez-Núñez, E., Avecilla-Ramírez, A. M., Ver- gara-Porras, B., & López-Cuellar, M. D. R. (2021). Green composites and their contribution toward sustainability: a review. Polymers and Polymer Com- posites, 29(Suppl 9), S1588–S1608. [CrossRef]
  • [94] Kopparthy, S. D. S., & Netravali, A. N. (2021). Green composites for structural applications. Composites Part C: Open Access, 6, Article 100169. [CrossRef]
  • [95] Ilyas, R. A., Zuhri, M. Y. M., Aisyah, H. A., Asyraf, M. R. M., Hassan, S. A., Zainudin, E. S., ... & Sari, N. H. (2022). Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for ad- vanced applications. Polymers (Basel), 14(1), Article 202. [CrossRef]
  • [96] Mann, G. S., Singh, L. P., Kumar, P., & Singh, S. (2020). Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials, 33(8), 1145– 1171. [CrossRef]
  • [97] Scaffaro, R., Maio, A., Gulino, E. F., Alaimo, G., & Morreale, M. (2021). Green composites based on PLA and agricultural or marine waste prepared by FDM. Polymers, 13(9), Article 1361. [CrossRef]
  • [98] Leow, Y., Yew, P. Y. M., Chee, P. L., Loh, X. J., & Kai, D. (2021). Recycling of spent coffee grounds for use- ful extracts and green composites. RSC Advances, 11(5), 2682–2692. [CrossRef]
  • [99] Kamble, Z., Behera, B. K., Mishra, R., & Behera, P. K. (2021). Influence of cellulosic and non-cellulosic particle fillers on mechanical, dynamic mechanical, and thermogravimetric properties of waste cotton fibre reinforced green composites. Composites Part B: Engineering, 207, Article108595. [CrossRef]
  • [100] Gholampour, A., & Ozbakkaloglu, T. (2020). A re- view of natural fiber composites: Properties, modifi- cation and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829–892. [CrossRef]
  • [101] Nawab, Y., Kashif, M., Asghar, M. A., Asghar, A., Umair, M., Shaker, K., & Zeeshan, M. (2018). De- velopment & characterization of green composites using novel 3D woven preforms. Applied Composite Materials, 25(4), 747–759. [CrossRef]
  • [102] Stapulionienė, R., Vaitkus, S., & Vėjelis, S. (2017). Investigation of Mechanical Properties of Compos- ite Made from Hemp and Polylactide. In Key Engineering Materials (Vol. 721, pp. 63-67). Trans Tech Publications Ltd. [CrossRef]
  • [103] Song, Y., Liu, J., Chen, S., Zheng, Y., Ruan, S., & Bin, Y. (2013). Mechanical properties of Poly (lactic acid)/hemp fiber composites prepared with a novel method. Journal of Polymers and the Environment, 21(4), 1117–1127. [CrossRef]
  • [104] Mukherjee, T., & Kao, N. (2011). PLA based biopoly- mer reinforced with natural fibre: a review. Journal of Polymers and the Environment, 19(3), 714–725. [CrossRef]
  • [105] Shibata, M., Ozawa, K., Teramoto, N., Yosomiya, R., & Takeishi, H. (2003). Biocomposites made from short abaca fiber and biodegradable polyesters. Macromolecular Materials and Engineering, 288(1), 35–43. [CrossRef]
APA Baysal A, YAYLA P, Türkmen H (2022). A review on engineering biocomposites and natural fiber-reinforced materials. , 231 - 249. 10.47481/jscmt.1136018
Chicago Baysal Ataberk,YAYLA PASA,Türkmen Halit Süleyman A review on engineering biocomposites and natural fiber-reinforced materials. (2022): 231 - 249. 10.47481/jscmt.1136018
MLA Baysal Ataberk,YAYLA PASA,Türkmen Halit Süleyman A review on engineering biocomposites and natural fiber-reinforced materials. , 2022, ss.231 - 249. 10.47481/jscmt.1136018
AMA Baysal A,YAYLA P,Türkmen H A review on engineering biocomposites and natural fiber-reinforced materials. . 2022; 231 - 249. 10.47481/jscmt.1136018
Vancouver Baysal A,YAYLA P,Türkmen H A review on engineering biocomposites and natural fiber-reinforced materials. . 2022; 231 - 249. 10.47481/jscmt.1136018
IEEE Baysal A,YAYLA P,Türkmen H "A review on engineering biocomposites and natural fiber-reinforced materials." , ss.231 - 249, 2022. 10.47481/jscmt.1136018
ISNAD Baysal, Ataberk vd. "A review on engineering biocomposites and natural fiber-reinforced materials". (2022), 231-249. https://doi.org/10.47481/jscmt.1136018
APA Baysal A, YAYLA P, Türkmen H (2022). A review on engineering biocomposites and natural fiber-reinforced materials. Journal of sustainable construction materials and technologies (Online), 7(3), 231 - 249. 10.47481/jscmt.1136018
Chicago Baysal Ataberk,YAYLA PASA,Türkmen Halit Süleyman A review on engineering biocomposites and natural fiber-reinforced materials. Journal of sustainable construction materials and technologies (Online) 7, no.3 (2022): 231 - 249. 10.47481/jscmt.1136018
MLA Baysal Ataberk,YAYLA PASA,Türkmen Halit Süleyman A review on engineering biocomposites and natural fiber-reinforced materials. Journal of sustainable construction materials and technologies (Online), vol.7, no.3, 2022, ss.231 - 249. 10.47481/jscmt.1136018
AMA Baysal A,YAYLA P,Türkmen H A review on engineering biocomposites and natural fiber-reinforced materials. Journal of sustainable construction materials and technologies (Online). 2022; 7(3): 231 - 249. 10.47481/jscmt.1136018
Vancouver Baysal A,YAYLA P,Türkmen H A review on engineering biocomposites and natural fiber-reinforced materials. Journal of sustainable construction materials and technologies (Online). 2022; 7(3): 231 - 249. 10.47481/jscmt.1136018
IEEE Baysal A,YAYLA P,Türkmen H "A review on engineering biocomposites and natural fiber-reinforced materials." Journal of sustainable construction materials and technologies (Online), 7, ss.231 - 249, 2022. 10.47481/jscmt.1136018
ISNAD Baysal, Ataberk vd. "A review on engineering biocomposites and natural fiber-reinforced materials". Journal of sustainable construction materials and technologies (Online) 7/3 (2022), 231-249. https://doi.org/10.47481/jscmt.1136018