Yıl: 2022 Cilt: 10 Sayı: 2 Sayfa Aralığı: 698 - 721 Metin Dili: Türkçe DOI: 10.21923/jesd.1023024 İndeks Tarihi: 05-10-2022

CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ

Öz:
Baca gazındaki CO2 gazının mikroalglerle tutulması küresel ısınmayla mücadele bakımından önemlidir. Bu çalışmada; farklı CO2 derişimlerinin (hacimce 400 ppm, %15 ve %90) ve azot stresinin Chlorella vulgaris mikroalg kültürünün CO2 tutma verimine etkisi incelenmiştir. Çalışmada, 5 cm iç çapa sahip, 100 cm yüksekliğinde pleksiglastan yapılmış fotobiyoreaktör kullanılmıştır. CO2 tutma verimi açısından en iyi sonucu veren CO2 derişimi belirlenmiş ve bu şartlar altında, mikroalg kültürü azot stresine maruz bırakılarak bünyesindeki lipit oranının nasıl değiştiği incelenmiştir. Mikroalg kültürü için en iyi büyüme değerleri %15 CO2 içeren gaz karışımı altında elde edilmiştir. Fotobiyoreaktöre verilen gaz karışımındaki CO2 oranı %90’a çıkarıldığında alg hücrelerinin inhibe olduğu gözlemlenmiştir. Yüksek CO2 derişimlerinde ortamın tamponlanması ve ortama verilen CO2 derişiminin kademeli olarak arttırılması gerekmektedir. %15 CO2 derişiminde %100 azot stresinde fotobiyoreaktörde büyüme gerçekleşmemiştir. Bu nedenle azot stresi (%100 ve %75) deneylerine erlenmeyerde 400 ppmv CO2 derişimi altında devam edilmiştir. %75 azotsuz ortamda %100 azotsuz ortama göre 1,3 kat daha iyi büyüme verimi elde edilmiştir. Ayrıca, %75 azotsuz deneyde %100 azotsuz ortama göre 2,5 kat daha yüksek RuBisCO oranı belirlenmiştir. %100 azotsuz deneyde ise %75 azotsuz ortama göre 1,2 kat daha yüksek lipit oranı elde edilmiştir.
Anahtar Kelime: CO2 Tutma Mikroalg Baca Gazı Azot Stresi Biyodizel

EFFECT OF CO2 CONCENTRATION AND NITROGEN STRESS ON CO2 CAPTURE EFFICIENCY OF CHLORELLA VULGARIS MICROALGE CULTURE

Öz:
CO2 capture in the flue gas by microalgae is important in terms of gloabal warming. The effect of CO2 concentration and nitrogen stress on CO2 capture efficiency of Chlorella vulgaris microalgae culture in this study. A photobioreactor with 5 cm inner diameter and 100 cm height was used for the tests. CO2 concentration that gives the best results in terms of CO2 capture efficiency was determined and under this condition, microalgae culture was exposed to nitrogen stress and the lipid ratio in its structure was examined. The maximum growth was achieved at 15% CO2. The growth was hindered when CO2 was increased to 90%. At high CO2, the medium should be buffered and CO2 should be gradually increased. The growth was inhibited at 15% CO2 under nitrogen stress in the photobioreactor. Therefore, nitrogen stress tests (100% ve 75%) were conducted in an erlenmeyer flask at 400 ppmv CO2. It was determined that there was a better growth under 75% nitrogen stress (1.3 times higher) compared to 100% nitrogen stress. Moreover, RuBisCO for 75% nitrogen stress was 2.5 times higher than %100 nitrogen stress. However, lipid content was 1.2 times higher for 100% nitrogen stress compared to the 75% nitrogen stress.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmad, A.L., Yasin N.H., Mat C.J.C., Derek Lim, J.K. 2011. Microalgae as a sustainable energy source for biodiesel production: A review. Renew. Sust. Energ. Rev., 15: 584-593.
  • Amaro, H.M., Guedes, A.C., Malcata, F.X. 2011. Advances and perspectives in using microalgae to produce biodiesel. Appl Energy, 88: 3402-3410.
  • Anjos, M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A., Dragone, G. 2013. Optimization of CO2 bio-mitigation by Chlorella Vulgaris. Bioresource Technology, 139: 149-154.
  • Aslam, A., Thomas-Hall S.R., Mughal, T.A., Schenk, P.M. 2017. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Bioresource Technology, 233: 271-283.
  • Aviva Systems Biology 2005. RuBisCo ELISA Kit (Plant) (OKCA00374) Instructions for use. https://www.avivasysbio.com/pub/media/pdf/products/OKCA00374.pdf. [Son erişim tarihi: 19.04.2021].
  • Barahoei, M., Hatamipour, M.S., Afsharzadeh, S. 2020. CO2 capturing by C. vulgaris in a bubble column photo-bioreactor; Effect of bubble size on CO2 removal and growth rate. J. CO2 Util, 37: 9-19.
  • Bischoff, H.W., Bold, H.C. 1963. Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. Phycol. Stud. (University of Texas) 4 (6318): (1)-95.
  • Bligh, E.G., Dyer, W.J. 1959. A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37: 911-917.
  • Bogless, C.D. 2014. Optimization of Growth Parameters for Algal Regrowth Potential Experiments. M.Sc. Thesis, California Polytechnic State University, San Luis Obispo/CA-USA.
  • Brown, M.L., Zeiler, K.G. 1993. Aquatic biomass and carbon dioxide trapping. Energy Convers. Manage, 34: 1005-1013.
  • Chávez-Fuentes, P., Ruiz-Marin, A., Canedo-López, Y. 2018. Biodiesel synthesis from C. vulgaris under effect of nitrogen limitation, intensity and quality light: estimation on the based fatty acids profiles. Mol Biol Rep, 45, 1145-1154.
  • Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource technology, 102: 1, 71-81.
  • Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances, 25 (3): 294-306.
  • Chiu, S.Y., Kao, C.Y., Huang, T.T., Lin, C.J., Ong, S.C., Chen, C.D., Chang, J.S. and Lin, C.S. 2011. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. Cultures. Bioresource Technology, 102: 9135-9142.
  • Daliry, S., Hallajisani, A., Mohammadi, Roshandeh, J., Nouri, H., Golzary, A. 2017. Investigation of optimal condition for C. vulgaris microalgae growth. Global J. Environ. Sci. Manage., 3 (2): 217-230.
  • Dukarte, J.H., de Morais, E.G., Radmann, E.M., Costa, J.A.V. 2017. Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp. Bioresource Technology, 234, 472–475.
  • Elcik, H., Çakmakcı, M. 2017. Mikroalglerden Yenilenebilir Biyoyakıt Üretimi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32 (3).
  • El-Sheekh, M.M., Gheda, S.F., El-Sayed, A.E.K.B., Abo Shady, A.M., El-Sheikh, M.E., Schagerl, M. 2019. Outdoor cultivation of the green microalga C. vulgaris vulgaris under stress conditions as a feedstock for biofuel. Environmental Science and Pollution Research, 26 (18): 18520-18532.
  • García-Cubero, R., Moreno-Fernández, J., García-González, M. 2017. Potential of Chlorella vulgaris to Abate Flue Gas. Waste and Biomass Valorization. DOI: 10.1007/s12649-017-9987-9.
  • Goli, A., Shamiri, A., Talaiekhozani, A., Eshtiaghi, N., Aghamohammadi, N., Aroua, M.K. 2016. An overview of biological processes and their potential for CO2 capture. Journal of Environmental Management, 183: 41-58.
  • Griffiths, M.J., Garcin, C., Hille, R.P., Harrison, S.T.L. 2011. Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods, 85: 119-123.
  • Gürol, M.D., Soydemir, G., Şen, Ü.K., Say, N., Şen Ü. 2014. Mikroalglerden biyoyakıt üretim potansiyeli. Enerji Tarımı ve Biyoyakıtlar 4. Ulusal Çalıştayı, 69-78.
  • Han, F., Pei, H., Hu, W., Song, M., Ma, G., Pei, R. 2015. Optimization and lipid production enhancement of microalgae culture by efficiently changing the conditions along with the growth-state. Energy Conversion and Management, 90: 315-322.
  • Healey, F.P. 1975. Physiological indicators of nutrient deficiency in algae. Tech. Rep. 585. Department of the Environment, Fisheries and Marine Service Research and Development Directorate, Winnipeg, Man.
  • Hu, X., Zhou, J., Liu, G., Gui, B. 2016. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten C. vulgaris strains using municipal wastewater, Journal of Environmental Sciences, 46: 83-91.
  • Huang, G., Wang, J., Kuang, Y., He, H. 2016. Effects of SO2 and NO2 in Flue Gas on CO2 Sequestration and Intracellular Microstructures Analysis of Chlorella sp. Research & Reviews: Journal of Microbiology and Biotechnology, 5 (3): 60-67.
  • Hulatt, C.J., Thomas, D.N. 2011. Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresource Technology, 102 (10): 5775-5787.
  • IEA 2017. Key World Energy Statistics. Sayfa 54. Paris: OECD/IEA.
  • Jeong, M.J., Gillis, J.M., Hwang, J.Y. 2003. Carbon dioxide mitigation by microalgal photosynthesis. Bulletin- Korean Chemical Society, 24: 1763-1766.
  • Kao, C.Y., Chen, T.Y., Chang, YB., Chiu, T.W., Lin, H.Y., Chen, C.D., Lin, C.S. 2014. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresource Technology, 166, 485–493.
  • Kendirlioğlu, G. 2012. Chlorella Vulgaris’in Hücre Sayısı, Klorofil Miktarı ve Büyüme Hızına Aydınlanma Süresinin Etkisi. Fırat Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Elazığ.
  • Kendirlioğlu, G., Agırman, N., Cetin, A.K. 2015. The effects of photoperiod on the growth, protein amount and pigment content of Chlorella Vulgaris. Turkish Journal of Science & Technology, 10 (2): 7-10.
  • Khoeyi, Z.A., Seyfabadi J., Ramezanpour, Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella Vulgaris. Aquacult. Int., 20 (1): 41-49.
  • Kitaya, Y., Azuma, H., Kiyota, M. 2005. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis. Advances in Space Research, 35 (9): 1584-1588.
  • Kong, Q.X., Li, L., Martinez, B, Chen, P., Ruan, R. 2010. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol, 160: 9-18.
  • Lam, M.K., Lee, K.T. 2012. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology Advances, 30 (3): 673-690.
  • Li,Y., Horsman, M., Wang, B., Wu, N., Lan, C.Q. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81 (4): 629-636.
  • Liu, Z., Wang, G., Zhou, B., 2008. Effect of iron on growth and lipid accumulation in Chlorella Vulgaris. Bioresour Technol, 99: 4717-4722.
  • Markou, G., Dao, L.H.T., Muylaert, K., Beardall, J. 2017. Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella Vulgaris. Algal Research, 26: 84-92.
  • Mata, T.M., Martins, A.A., Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14: 217-232.
  • Menteşe, S., Çotuker, O., 2021. Partikül madde, karbon monoksit ve karbondioksit seviyelerinin iç ve dış ortamlarda değişimi. Mühendislik Bilimleri ve Tasarım Dergisi, 9 (3), 723-734. DOI: 10.21923/jesd.811053.
  • Miranda, C.T., Pinto, R.F., Lima, D.V.N., Viegas, C.V., Costa S.M., Azevedo, S.M.F.O. 2015. Microalgae Lipid and Biodiesel Production: A Brazilian Challenge. American Journal of Plant Sciences, 6: 2522-2533.
  • Miranda, C.T., Lima, D.V.N., Atella, G.C., Aguiar, P.F., Azevedo, S.M.F.O. 2016. Optimization of Nitrogen, Phosphorus and Salt for Lipid Accumulation of Microalgae: Towards the Viability of Microalgae Biodiesel. Natural Science. 8: 557-573.
  • Míguez, J.L, Porteiro, J., Pérez-Orozco, R., Patiño, D., Rodríguez, S. 2018. Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity. Applied Energy. 211: 1282-1296.
  • Montoya, O., Casazza, A.A., Aliakbarian, B., Perego, P., Converti, A., de Carvalho, J.C.M. 2014. Production of Chlorella Vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations. Biotechnology Progress, 30 (4): 916-922.
  • Morais, M.G., Costa, J.A.V. 2007. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48: 2169-2173.
  • Münkel, R., Schmid-Staiger, U., Werner, A., Hirth, T. 2013. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella Vulgaris. Biotechnology and Bioengineering, 110 (11): 2882-2893.
  • Nakamura, C.E., Whited, G.M. 2003. Metabolic engineering for the microbial production of 1,3-propanediol. Current Opinion in Biotechnology, 14 (5): 454-459.
  • Nautiyal, P., Subramanian, K.A., Dastidar, M.G. 2014. Production and characterization of biodiesel from algae. Fuel Processing Technology, 120, 79–88.
  • NOAA 2021. Trends in Atmospheric Carbon Dioxide, Monthly Average Mauna Loa CO2. National Oceanic and Atmospheric Administration. https://gml.noaa.gov/ccgg/trends/. [Son erişim tarihi: 05.06.2021].
  • Öğüt, H., Oğuz, H. 2006. Üçüncü Milenyum Yakıtı Biyodizel, Nobel Yayın Dağıtım, Ankara, 190 s.
  • Parsons, T.R., Strickland, J.D.H. 1972. A practical handbook of seawaters analysis. Bull Fish Res Bd Can, 167: 1-20.
  • Pegallapati, A.K., Nirmalakhandan, N. 2013. Internally illuminated photobioreactor for algal cultivation under carbon dioxide-supplementation: Performance evaluation. Renewable Energy, 56: 129-135.
  • Rashid, N., Rehman, M.S.U., Sadiq, M., Mahmood, T., Han, J.I. 2014. Current status, issues and developments in microalgae derived biodiesel production. Renewable Sustainable Energy Rev., 40: 760-778.
  • Rendon, S.M., Roldan, G.CJ.C., Paul Voroney, R. 2013. Effect of carbon dioxide concentration on the growth response of Chlorella vulgaris under four different led illumination. International Journal of Biotechnology for Wellness Industries, 2013, 2, 125-131.
  • Rodrigues, L.H.R., Arenzon, A., Raya-Rodriguez, M.T., Fontoura, N.F. 2011. Algal density assessed by spectrophotometry: A calibration curve for the unicellular algae Pseudokirchneriella subcapitata. Journal of Environmental Chemistry and Ecotoxicology, 3 (8): 225-228.
  • Ryu, H.J., Oh, K.K., Kim, Y.S. 2009. Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J. Ind. Eng. Chem., 15: 471-475.
  • Sadeghizadeh, A., Farhad, F., Moghaddasi, L., Rahimi, R. 2017. CO2 capture from air by Chlorella Vulgaris microalgae in an airlift photobioreactor. Bioresource Technology, 243: 441-447.
  • Scarsella, M., Belotti, G., De Filippis, P., Bravi, M. 2010. Study on the optimal growing conditions of Chlorella Vulgaris in bubble column potobioreactors. Chemical Engineering Transactions, 20: 85-90.
  • Sibi, G., Shetty, V., Mokashi, K. 2016. Enhanced lipid productivity approaches in microalgae as an alternate for fossil fuels – A review. Journal of the Energy Institute, 89 (3): 330-334.
  • Song, W., Rashid, N., Choi, W., Lee, K. 2011. Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis, Bioresour. Technol., 102 (18): 8676-8681.
  • Stephenson, A.L., Dennis, J.S., Howe, C. J., Scott, S.A., Smith, A.G. 2010. Influence of nitrogen-limitation regime on the production by Chlorella Vulgaris of lipids for biodiesel feedstocks. Biofuels, 1 (1): 47-58.
  • Sung, K.D., Lee, J.S., Shin, C.S., Park, S.C. 1998. Enhanced cell growth of sp. KR-1 by the addition of iron and EDTA. Journal of Microbiology and Biotechnology, 8: 409-411.
  • Sutherland, D., Craggs, R., Campbell, H. 2012. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production, J. Appl. Phycol,. 24: 329-337.
  • Sutherland, D.L., Howard-Williams, C., Turnbull, M.H., Broady, P.A., Craggs, R.J. 2013. Seasonal variation in light utilisation, biomass production and nutrient removal by wastewater microalgae in a full-scale high-rate algal pond. J. Appl. Phycol., 26: 1317-1329.
  • Tang, D., Han, W., Li, P., Miao, X., Zhong, J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102 (3): 3071-3076.
  • Taştan, B.E., Duygu, E., İlbaş, M., Dönmez, G. 2013. Utilization of LPG and gasoline engine exhaust emissions by microalgae. Journal of Hazardous Materials, 246-247: 173-180.
  • Taştan, B.E., Duygu. E., İlbaş. M., Dönmez, G. 2016. Enhancement of microalgal biomass production and dissolved inorganic C fixation from actual coal flue gas by exogenous salicylic acid and 1-triacontanol growth promoters. Energy, 103: 598-604.
  • TÜİK 2021. Sera Gazı Emisyon İstatistikleri 1990-2019. Türkiye İstatistik Kurumu. https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2019-37196 [Son erişim tarihi: 14.06.2021].
  • Ullah, K., Ahmad, M., Sharma, V.K., Lu, P., Harvey, A., Zafar, M., Sultana, S., Anyanwu, C.N. 2014. Algal biomass as a global source of transport fuels: Overview and development perspectives. Progress in Natural Science: Materials International, 24: 329-339.
  • Usui, N., Ikenouchi, M. 1997. The biological CO2 fixation and utilization project by RITE (1) Highly-effective photobioreactor system. Energy Convers. Manag. 38, S487-S492.
  • Utex 2019. Culture Collection of Algae at the University of Texas at Austin. https://utex.org/. [Son erişim tarihi: 25.12.2019].
  • Wahidin, S., Idris, A., Shaleh, S.R. 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 129: 7-11.
  • Wong, Y.K., Ho, K.C., Tsang, Y.F., Wang, L., Yung, K.K.L. 2016. Cultivation of Chlorella vulgaris in column photobioreactor for biomass production and lipid accumulation. Water Environment Research, 88 (1), 40–46.
  • Yaakob, M.A., Mohamed, R.M.S.R., Al-Gheethi, A., Aswathnarayana Gokare, R., Ambati, R.R. 2021. Influence of Nitrogen and Phosphorus on Microalgal Growth, Biomass, Lipid, and Fatty Acid Production: An Overview. Cells, 10, 393.
  • Yeh, K.L., Chang, J.S., Chen,W. 2010. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella Vulgaris ESP-31. Engineering in Life Sciences, 10 (3): 201-208.
  • Yıldız, İ., Çalışkan, H., 2020. Motor yüküne bağlı olarak biyodizel yakıtlı bir dizel motorun enerji ve ekserji analizi sonuçlarının değerlendirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 8 (3), 833-843. DOI: 10.21923/jesd.775787.
  • Yodsuwan, N., Sawayama, S., Sirisansaneeyakul, S. 2017. Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum. Agriculture and Natural Resources, 51 (3): 190-197.
  • Yusuf, N.N.A.N., Kamarudin, S.K., Yaakub, Z. 2011. Overview on the current trends in biodiesel production. Energy Conversion and Management, 52 (7): 2741- 2751.
  • Zhu, L.D., Li, Z.H., Hiltunen, E. 2016. Strategies for Lipit Production Improvement in Microalgae as a Biodiesel Feedstock. BioMed Research International, 1-8.
APA AKGÜL G, Varol M, Erdem A (2022). CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ. , 698 - 721. 10.21923/jesd.1023024
Chicago AKGÜL GAMZE,Varol Murat,Erdem Ayca CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ. (2022): 698 - 721. 10.21923/jesd.1023024
MLA AKGÜL GAMZE,Varol Murat,Erdem Ayca CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ. , 2022, ss.698 - 721. 10.21923/jesd.1023024
AMA AKGÜL G,Varol M,Erdem A CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ. . 2022; 698 - 721. 10.21923/jesd.1023024
Vancouver AKGÜL G,Varol M,Erdem A CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ. . 2022; 698 - 721. 10.21923/jesd.1023024
IEEE AKGÜL G,Varol M,Erdem A "CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ." , ss.698 - 721, 2022. 10.21923/jesd.1023024
ISNAD AKGÜL, GAMZE vd. "CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ". (2022), 698-721. https://doi.org/10.21923/jesd.1023024
APA AKGÜL G, Varol M, Erdem A (2022). CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ. Mühendislik Bilimleri ve Tasarım Dergisi, 10(2), 698 - 721. 10.21923/jesd.1023024
Chicago AKGÜL GAMZE,Varol Murat,Erdem Ayca CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ. Mühendislik Bilimleri ve Tasarım Dergisi 10, no.2 (2022): 698 - 721. 10.21923/jesd.1023024
MLA AKGÜL GAMZE,Varol Murat,Erdem Ayca CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ. Mühendislik Bilimleri ve Tasarım Dergisi, vol.10, no.2, 2022, ss.698 - 721. 10.21923/jesd.1023024
AMA AKGÜL G,Varol M,Erdem A CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ. Mühendislik Bilimleri ve Tasarım Dergisi. 2022; 10(2): 698 - 721. 10.21923/jesd.1023024
Vancouver AKGÜL G,Varol M,Erdem A CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ. Mühendislik Bilimleri ve Tasarım Dergisi. 2022; 10(2): 698 - 721. 10.21923/jesd.1023024
IEEE AKGÜL G,Varol M,Erdem A "CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ." Mühendislik Bilimleri ve Tasarım Dergisi, 10, ss.698 - 721, 2022. 10.21923/jesd.1023024
ISNAD AKGÜL, GAMZE vd. "CO2 DERİŞİMİNİN VE AZOT STRESİNİN CHLORELLA VULGARİS MİKROALG KÜLTÜRÜNÜN CO2 TUTMA VERİMİNE ETKİSİ". Mühendislik Bilimleri ve Tasarım Dergisi 10/2 (2022), 698-721. https://doi.org/10.21923/jesd.1023024