Yıl: 2021 Cilt: 8 Sayı: 2 Sayfa Aralığı: 706 - 717 Metin Dili: İngilizce DOI: 10.31202/ecjse.866687 İndeks Tarihi: 06-10-2022

Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps

Öz:
his study aims to investigate behaviour and failure modes of damaged concrete strengthened using fibre reinforced polymer (FRP) with three different thickness (50 mm, two-50 mm, and 150 mm strips) and different configurations of CFRP wraps. The mechanical performance of damaged concretes was evaluated utilizing carbon fibre reinforced polymer (CFRP) composites under compression tests. The strengthened confined damaged concrete specimen was compared with unconfined damaged concrete in terms of compressive strength, failure modes, and cracks patterns. A total of 8 different damaged and undamaged specimens were tested, with one of these specimens acting as a control damage specimens and the remaining specimens wrapped with different cross section configurations of CFRP by different wrapping schemes. The results revealed that the partially-wrapped damaged specimens exhibited a higher compressive strength as compared to the corresponding control damaged specimens. The strengthened confined concrete specimen displayed more ductile behaviour, which depends on the failure mode. As a result of using the two-50 mm thickness of CFRP strips, a significant increase in the ultimate load was observed due to the high strength of the composites.
Anahtar Kelime: FRP confined failure strength composites

Fiber Takviyeli Polimer Sargılar ile Güçlendirilmiş Hasarlı Betonların Mekanik Özellikleri

Öz:
Çalışmada, üç farklı kalınlıkta (50, 2 adet 50 mm ve 150 mm şeritler) ve CFRP sargılı fiber takviyeli polimer (FRP) kullanılarak güçlendirilmiş hasarlı betonların davranışını ve kırılma davranışlarını incelemeyi amaçlamaktadır. Hasar görmüş betonun mekanik performansı, tek eksenli yük testleri altında CFRP kompozitler kullanılarak değerlendirilmiştir. Güçlendirilmiş, sargılı hasarlı beton numunelerinin, basınç dayanımı, göçme modları ve çatlak modelleri açısından, hasarlı kontrol beton numune ile karşılaştırılmıştır. Toplam 8 farklı hasarlı ve hasar görmemiş örnekler test edilmiştir; bu örneklerden biri kontrol hasarlı numune olarak diğer örnekler ise CFRP'nin farklı kesit ve kalınlıkta konfigürasyonları uygulanmıştır. Sonuçlar, sargılı hasarlı numunelerin karşılık gelen kontrol hasarlı numuneler ile karşılaştırıldığında daha yüksek dayanımı sergilediğini belirlenmiştir. Güçlendirilmiş beton numune, kırılma moduna bağlı olarak daha sünek davranış sergilemiştir. 2 adet 50 mm kalınlıkta CFRP kullanılarak güçlendirilen numunede, bu kompozitlerin daha yüksek mukavemet göstermesi nedeniyle nihai yükte önemli bir artış gözlenmiştir.
Anahtar Kelime: FRP sargılı kırılma dayanım kompozitler

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Júlio E.S, Branco F., Silva V.D, Structural rehabilitation of columns using reinforced concrete jacketing, Progress in Structural Engineering and Materials, 2003, 5: 29-37
  • [2]. Bakis C.E., Bank L.C., Brown V.L., Cosenza E., Davalos J.F., Lesko J.J., Fiber-reinforced polymer composites for construction state-of-the-art review, Journal Composite Construction ASCE, 2002, 6 (2): 73-87.
  • [3]. Teng J.G., Chen J.F., Smith S.T., Lam L. Behaviour and strength of FRP-strengthened RC strutures: a state-of-the-art review, ICE Proc: Structures & Buildings, 2003, 156 (1):51-62
  • [4]. Karabinis A.I., Rousakis T.C. Concrete confined by FRP material: a plasticity approach, ASCE Journal of Engineering Structures, 2002, 24 (7):923-932
  • [5]. Castro P., Carino N.J. Tensile and Nondestructive testing of FRP bars. Journal of Composite Construction 1998, 2(1):17–27.
  • [6]. Schmidt J.W., Bennitz A., Taljsten B., Goltermann P., Mechanical anchorage of FRP tendons – a literature review, Construction and Building Material, 2012, 32:110-121
  • [7]. Zhou H.J., Lu J.L., Xi X., Dong B.Q., Xing F., Effects of stirrup corrosion on bond-slip performance of reinforcing steel in concrete: an experimental study, Construction and Building Material, 2015, 93: 257-266
  • [8]. Lee H.S., Kage T., Noguchi T., Tomosawa F. An experimental study on the retrofitting effects of reinforced concrete columns damaged by rebar corrosion strengthened with carbon fibre sheets, Cement Concrete Research, 2003, 33 (4):563-570
  • [9]. Yang Y.Q., Wang X., Wu Z.S., Long-span cable-stayed bridge with hybrid arrangement of FRP cables, Composite Structure, 2020, 237: 111966
  • [10]. Tabatabaiefar H.R., Massumi A., A simplified method to determine seismic responses of reinforced concrete moment esisting building frames under influence of soil–structure interaction, Soil Dynamics and Earthquake Engineering, 2010, 30 (11):1259-1267
  • [11]. Eslami A., Ronagh H. Effect of FRP wrapping in seismic performance of RC buildings with and without special detailing–A case study, Composite Part B Engineering, 2013, 45 (1):1265-1274.
  • [12]. Paal S.G., Jeon J.S., Brilakis I., DesRoches R., Automated damage index estimation of reinforced concrete columns for post-earthquake evaluations, Journal Structural Engineering, 2015, 141:04014228.
  • [13]. Colomb F., Tobbi H., Ferrier E., Hamelin P., Seismic retrofit of reinforced concrete short columns by CFRP materials, Composite Structures, 2008, 82 (4): 475-487.
  • [14]. Junaid M.T., Elbana A., Altoubat S., Flexural response of geopolymer and fiber reinforced geopolymer concrete beams reinforced with GFRP bars and strengthened using CFRP sheets, Structures, 2020, 24: 666-677.
  • [15]. Erberik M.A. Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey. Engineering Structures, 2008, 30(5):1360–1374.
  • [16]. Gu D.S, Wu Y.F., Wu G., Wu Z.S., Plastic hinge analysis of FRP confined circular concrete columns. Construction and Building Material, 2012, 27(1): 223-233.
  • [17]. Raoof S.M., Koutas L.N, Bournas D.A. (2017) Textile-reinforced mortar (TRM) versus fibre- reinforced polymers (FRP) in flexural strengthening of RC beams, Construction and Building Material, 151 (1):279-291.
  • [18]. Camata G., Spacone E., Al-Mahaidi R., Saouma V., Analysis of test specimens for cohesive near-bond failure of fiber-reinforced polymer-plated concrete, Journal of Composite Construction, 2004, 8(6): 528–538
  • [19]. Amran Y.H.M., Alyousef R, Rashid R.S.M., Alabduljabbar H., Hung C.C. Properties and applications of FRP in strengthening RC structures: a review Structures, 2018, 16: 208-238.
  • [20]. Wu, G., Lu, Z., Wu, Z. Strength and ductility of concrete cylinders confined with FRP composites, Construction and Building Material, 2006, 20 3:134-148.
  • [21]. TS EN 197-1, Cement- Part 1: Compositions and conformity criteria for common cements, Turkish Standards, Ankara, Turkey, 2012.
  • [22]. ASTM C39/C39M-12. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA, 2012.
  • [23]. ASTM C1585-13, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, Annual Book of ASTM Standards, 2004.
  • [24]. Zeyad A.M., Khan A.H., Tayeh B.A. Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers, Journal Material Research Technol., 2020, 9 (1).
  • [25]. Niu D., Su L., Luo Y., et al. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete, Construction and Building Material 2020, 237: 117628.
  • [26]. Feng C., Janssen H., Hygric properties of porous building materials (III): impact factors and data processing methods of the capillary absorption test, Building Environmental 2018, 134:21–34.
  • [27]. Zhang P., Wittmann F.H., Vogel M., et al., Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete, Cement Concrete Research, 2017, 100: 60– 67.
  • [28]. Saberi H., Hatami F., Rahai A. On axial compressive behavior of steel fiber reinforced concrete confined by FRP, Adv. Strucural Engineering, 2021, https://doi.org/10.1177/1369433220981658
  • [29]. Li, G. Experimental study of FRP confined concrete cylinders, Engineering Structures, 2006, 28 7:1001-1008.
  • [30]. Wu, G., Lu, Z., Wu, Z. Strength and ductility of concrete cylinders, confined with FRP composites, Construction and Building, Materials, 2006, 20:3, pp. 134-148.
  • [31]. Chen J.F., Xie J.K., Tao Y., Li X.Q. A review of FRP strengthened concrete structures under extreme loading. International Conference on Performance-based and Life-cycle Structural Engineering. 2015.
  • [32]. Lee W.T., Chiou Y.J., Shih M.H., Reinforced Concrete Beam–Column Joint Strengthened with Carbon Fiber Reinforced Polymer. Composite Structures, 2010, 92:pp:48- 60
  • [33]. Al-Tersawy S.H., “Effect of fiber parameters and concrete strength on shear behavior of strengthened RC beams“, Construction and Building Material, 2013, 44:15-24.
  • [34]. Attari N., Amziane S., Chemrouk M., Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets“, Construction and Building Material, 2012, 37:746-757.
  • [35]. Yang D.S., Park S.K., Neale K.W., Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites“, Composite Structures, 2009, “88(4): 497- 508
  • [36]. Haddad R.H., Almomani O.A., “Recovering flexural performance of thermally damaged concrete beams using NSM CFRP strips, 2017, 154:632-643.
  • [37]. Shannag M.J., Al-Akhras N.M., Mahdawi S.F., Flexure strengthening of lightweight reinforced concrete beams using carbon fibre-reinforced polymers“, Structure and Infrastructural Engineering 2014, 10:604-613.
  • [38]. Parvin, A., Jamwal, A.S. Effects of wrap thickness and ply configuration on composite- confined concrete cylinders, Composite Structures, 2005, 67 4:437-442.
  • [39]. Bilotta A., Ceroni F., Di Ludovico M., Nigro E., Pecce M., Manfredi G., Bond efficiency of EBR and NSM FRP systems for strengthening concrete members, Journal of Composite for Construction, 2011, 15 (7):757-772
  • [40]. Zhang S.S., Teng J.G., Yu T., Bond–slip model for CFRP strips near-surface mounted to concrete, Engineering Structures, 2013, 56:945-953
  • [41]. Benzarti K., Chataigner S., Quiertant M., Marty C., Aubagnac C. Accelerated ageing behaviour of the adhesive bond between concrete specimens and CFRP overlays, Construction and Building Materials 2011, 25:523-538
  • [42]. İlhan, R., Feyzullahoğlu, E., The Wear of Glass Fiber Reinforced Polyester Composite Materials at Different Loads and Speeds, El-Cezerî Journal of Science and Engineering, 2018, 5(1); 259-266.
  • [43]. Topçu İ. B., Uygunoğlu T. GFRP Properties of GFRP Rods and Use in Prefabricated Infrastructure Element, El-Cezerî Journal of Science and Engineering, 2020, 7(1); 169-178.
  • [44]. Zeng J.J., Guo Y.C., Gao W.Y., Chen W.P., Li L.J., Stress-strain behavior of concrete in circular columns partially wrapped with FRP strips, Composite Structures, 2018, 200:810-828
  • [45]. Durmuş, F., Ekrem, M., Soykasap, Ö., “The Effects of of Curing Pressure on Mechanic Characteristics of Carbon Fiber Reinforced Epoxy Composites Used in Aircrafts, El-Cezerî Journal of Science and Engineering, 2016, 3(1);55-65.
  • [46]. Tan F. Experimental Investigation of Mechanical Properties for Injection Molded PA66+PA6I/6T Composite Using RSM and Grey Wolf Optimization, El-Cezerî Journal of Science and Engineering, 2020, 7(2);835-847.
  • [47]. Yu T., Lin G., Zhang S.S., Compressive behavior of FRP-confined concrete-encased steel columns, Composite Structures, 2016, 154:493-506.
APA MARAS M (2021). Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps. , 706 - 717. 10.31202/ecjse.866687
Chicago MARAS MUSLUM MURAT Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps. (2021): 706 - 717. 10.31202/ecjse.866687
MLA MARAS MUSLUM MURAT Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps. , 2021, ss.706 - 717. 10.31202/ecjse.866687
AMA MARAS M Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps. . 2021; 706 - 717. 10.31202/ecjse.866687
Vancouver MARAS M Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps. . 2021; 706 - 717. 10.31202/ecjse.866687
IEEE MARAS M "Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps." , ss.706 - 717, 2021. 10.31202/ecjse.866687
ISNAD MARAS, MUSLUM MURAT. "Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps". (2021), 706-717. https://doi.org/10.31202/ecjse.866687
APA MARAS M (2021). Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps. El-Cezerî Journal of Science and Engineering, 8(2), 706 - 717. 10.31202/ecjse.866687
Chicago MARAS MUSLUM MURAT Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps. El-Cezerî Journal of Science and Engineering 8, no.2 (2021): 706 - 717. 10.31202/ecjse.866687
MLA MARAS MUSLUM MURAT Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps. El-Cezerî Journal of Science and Engineering, vol.8, no.2, 2021, ss.706 - 717. 10.31202/ecjse.866687
AMA MARAS M Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps. El-Cezerî Journal of Science and Engineering. 2021; 8(2): 706 - 717. 10.31202/ecjse.866687
Vancouver MARAS M Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps. El-Cezerî Journal of Science and Engineering. 2021; 8(2): 706 - 717. 10.31202/ecjse.866687
IEEE MARAS M "Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps." El-Cezerî Journal of Science and Engineering, 8, ss.706 - 717, 2021. 10.31202/ecjse.866687
ISNAD MARAS, MUSLUM MURAT. "Mechanical Properties of Confined Damaged Concrete Strengthened with Fibre Reinforced Polymer Wraps". El-Cezerî Journal of Science and Engineering 8/2 (2021), 706-717. https://doi.org/10.31202/ecjse.866687