Yıl: 2022 Cilt: 23 Sayı: 3 Sayfa Aralığı: 154 - 166 Metin Dili: İngilizce DOI: 10.4274/jtgga.galenos.2022.2022-1-14 İndeks Tarihi: 09-10-2022

Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study

Öz:
Objective: This study aimed to compare the effects of human umbilical cord mesenchymal stem cells (hUCMSCs), amniotic fluid (AF), and a combination of both on the uterus and ovaries in a rat model of abdominal adhesions. Material and Methods: This study was designed as a controlled study. Four groups, each consisting of six rats, were randomly formed. One group was designated as the control (CNT). hUCMSCs - applied (hUCSC), AF-applied (AMN), and a combination of both (hUCSC + AMN) were the experimental groups. All rats were given intraperitoneal talc powder to create adhesions. After 21 days, animals in experimental groups were further treated with hUCMSC, AF or a combination of these. Results: There was a statistically significant difference in primordial follicle count, endometrial gland number, and endometrial blood vessel count (p<0.05). AMN provided the best results in the endometrial vessel and primordial follicle count. The average endometrial gland count in AMN and hUCSC + AMN was similarly higher than CNT and hUCSC alone. Conclusion: There were significantly higher for counts for endometrial glands, endometrial blood vessels, and primordial follicles in the hUCSC, AMN and hUCSC + AMN groups compared to controls. Animals in the AMN group had the best result for endometrial vessel and highest primordial follicle count. (J Turk Ger Gynecol Assoc 2022; 23: 154-66)
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Krielen P, Stommel MWJ, Pargmae P, Bouvy ND, Bakkum EA, Ellis H, et al. Adhesion-related readmissions after open and laparoscopic surgery: a retrospective cohort study (SCAR update). Lancet 2020; 395: 33-41. Erratum in: Lancet 2020; 395: 272.
  • 2. Menzies D, Ellis H. Intestinal obstruction from adhesions-How big is the problem? Ann R Coll Surg Engl 1990; 72: 60-3.
  • 3. Stommel MWJ, Ten Broek RPG, Strik C, Slooter GD, Verhoef C, Grünhagen DJ, et al. Multicenter observational study of adhesion formation after open-and laparoscopic surgery for colorectal cancer. Ann Surg 2018; 267: 743-8.
  • 4. Diamond MP, Freeman ML. Clinical implications of postsurgical adhesions. Hum Reprod Update 2001; 7: 567-76.
  • 5. Ten Broek RP, Kok-Krant N, Bakkum EA, Bleichrodt RP, van Goor H. Different surgical techniques to reduce post-operative adhesion formation: a systematic review and meta-analysis. Hum Reprod Update 2013; 19: 12-25.
  • 6. Yasemin A, Mehmet B, Omer A. Assessment of the diagnostic efficacy of abdominal ultrasonography and cine magnetic resonance imaging in detecting abdominal adhesions: A doubleblind research study. Eur J Radiol 2020; 126: 108922.
  • 7. Gopireddy DR, Soule E, Arif-Tiwari H, Sharma S, Kanmaniraja D, Jain K, et al. Spectrum of CT findings related to bowel adhesions without bowel obstruction: a comprehensive imaging review. J Clin Imaging Sci 2020; 10: 80.
  • 8. Levrant SG, Bieber EJ, Barnes RB. Anterior abdominal wall adhesions after laparotomy or laparoscopy. J Am Assoc Gynecol Laparosc 1997; 4: 353-6.
  • 9. Ellis H, Moran BJ, Thompson JN, Parker MC, Wilson MS, Menzies D, et al. Adhesion-related hospital readmissions after abdominal and pelvic surgery: A retrospective cohort study. Lancet 1999; 353: 1476-80.
  • 10. Greene AK, Alwayn IP, Nose V, Flynn E, Sampson D, Zurakowski D, et al. Prevention of intra-abdominal adhesions using the antiangiogenic COX-2 inhibitor celecoxib. Ann Surg 2005; 242: 140-6.
  • 11. Özçelik B, Serin IS, Basburg M, Uludag S, Narin F, Tayyar M. Effect of melatonin in the prevention of post-operative adhesion formation in a rat uterine horn adhesion model. Hum Reprod 2003; 18: 1703-6.
  • 12. Weibel MA, Majno G. Peritoneal adhesions and their relation to abdominal surgery. A postmortem study. Am J Surg 1973; 126: 345- 53.
  • 13. Parker MC, Wilson MS, Menzies D, Sunderland G, Clark DN, Knight AD, et al. The SCAR-3 study: 5-year adhesion-related readmission risk following lower abdominal surgical procedures. Color Dis 2005; 7: 551-8.
  • 14. Ellis H. Intraabdominal and postoperative peritoneal adhesions. J Am Coll Surg 2005; 200: 643-4.
  • 15. Rodgers KE, diZerega GS. Modulation of peritoneal reepithelialization by postsurgical macrophages. J Surg Res 1992; 53: 542-8.
  • 16. Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: Etiology, pathophysiology, and clinical significance - Recent advances in prevention and management. Dig Surg 2001; 18: 260-73.
  • 17. Risberg B. Adhesions: preventive strategies. Eur J Surg Suppl 1997; 577: 32-9.
  • 18. Canbaz MA, Ustün C, Koçak I, Yanik FF. The comparison of gonadotropin-releasing hormone agonist therapy and intraperitoneal Ringer’s lactate solution in prevention of postoperative adhesion formation in rat models. Eur J Obstet Gynecol Reprod Bio 1999; 82: 219-22.
  • 19. Hindocha A, Beere L, Dias S, Watson A, Ahmad G. Adhesion prevention agents for gynaecological surgery: an overview of Cochrane reviews. Cochrane Database Syst Rev 2015; 1: CD011254.
  • 20. Ahmad G, Kim K, Thompson M, Agarwal P, O’Flynn H, Hindocha A, et al. Barrier agents for adhesion prevention after gynaecological surgery. Cochrane Database Syst Rev 2020; 3: CD000475.
  • 21. Wei G, Wu Y, Gao Q, Zhou C, Wang K, Shen C, et al. Effect of emodin on preventing postoperative intra-abdominal adhesion formation. Oxid Med Cell Longev 2017; 2017: 1740317.
  • 22. Cheng F, Wu Y, Li H, Yan T, Wei X, Wu G, et al. Biodegradable N, O-carboxymethyl chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion. Carbohydr Polym 2019; 207: 180-90.
  • 23. Lalountas M, Ballas KD, Michalakis A, Psarras K, Asteriou C, Giakoustidis DE, et al. Postoperative adhesion prevention using a statin-containing cellulose film in an experimental model. Br J Surg 2012; 99: 423-9.
  • 24. Chen PC, Chen YP, Wu CC, Tseng CC, Yang CY, Hung YW, et al. A resorbable hyaluronic acid hydrogel to prevent adhesion in porcine model under laparotomy pelvic surgery. J Appl Biomater Funct Mater 2021; 19: 2280800020983233.
  • 25. Vediappan RS, Bennett C, Cooksley C, Finnie J, Trochsler M, Quarrington RD, et al. Prevention of adhesions post-abdominal surgery: Assessing the safety and efficacy of Chitogel with Deferiprone in a rat model. PLoS One 2021; 16: e0244503.
  • 26. Hol JC, Strik C, Chaturvedi AA, Lomme RMLM, van Goor H, Stommel MWJ, et al. The efficacy of an ultrapure alginate gel in reducing adhesion formation in a rat model of blood contamination. J Surg Res 2019; 241: 271-6.
  • 27. Zhang E, Guo Q, Ji F, Tian X, Cui J, Song Y, et al. Thermoresponsive polysaccharide-based composite hydrogel with antibacterial and healing-promoting activities for preventing recurrent adhesion after adhesiolysis. Acta Biomater 2018; 74: 439-53.
  • 28. Almamar A, Schlachta CM, Alkhamesi NA. The systemic effect and the absorption rate of aerosolized intra-peritoneal heparin with or without hyaluronic acid in the prevention of postoperative abdominal adhesions. Surg Endosc 2019; 33: 2517-20.
  • 29. Ha US, Koh JS, Cho KJ, Yoon BI, Lee KW, Hong SH, et al. Hyaluronic acid-carboxymethylcellulose reduced postoperative bowel adhesions following laparoscopic urologic pelvic surgery: a prospective, randomized, controlled, single-blind study. BMC Urol 2016; 16: 28.
  • 30. Zhang E, Song B, Shi Y, Zhu H, Han X, Du H, et al. Fouling-resistant zwitterionic polymers for complete prevention of postoperative adhesion. Proc Natl Acad Sci U S A 2020; 117: 32046-55.
  • 31. Lai HS, Chen Y, Chang KJ, Chen WJ. Effects of octreotide on epidermal growth factor receptor, tissue plasminogen activator, and plasminogen activator inhibitor during intraperitoneal adhesion formation. J Gastroenterol 2003; 38: 555-60.
  • 32. Soleimani A, Asgharzadeh F, Rahmani F, Avan A, Mehraban S, Fakhraei M, et al. Novel oral transforming growth factor-β signaling inhibitor potently inhibits postsurgical adhesion band formation. J Cell Physiol 2020; 235: 1349-57.
  • 33. Nassif J, Abbasi SA, Kechli MK, Boutary SS, Ghulmiyyah L, Khalifeh I, et al. Effect of the mode of application of cryopreserved human amniotic membrane on adhesion formation after abdomino-pelvic surgery in a mouse model. Front Med (Lausanne) 2016; 3: 10.
  • 34. Kuckelman JP, Kononchik J, Smith J, Kniery KR, Kay JT, Hoffer ZS, et al. Human-derived amniotic membrane is associated with decreased postoperative intraperitoneal adhesions in a rat model. Dis Colon Rectum 2018; 61: 484-90.
  • 35. Nemec HM, Atalah H, Kling M, Nichols L, Powers B, Montgomery A, et al. Does human amnion membrane prevent postoperative abdominal adhesions? Am Surg 2020; 86: 1038-42.
  • 36. Foley-Comer AJ, Herrick SE, Al-Mishlab T, Prêle CM, Laurent GJ, Mutsaers SE. Evidence for incorporation of free-floating mesothelial cells as a mechanism of serosal healing. J Cell Sci 2002; 115: 1383-9.
  • 37. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103: 1204-19.
  • 38. Bollini S, Gentili C, Tasso R, Cancedda R. The regenerative role of the fetal and adult stem cell secretome. J Clin Med 2013; 2: 302-27.
  • 39. Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 2011; 50: 280-9.
  • 40. Maraldi T, Bertoni L, Riccio M, Zavatti M, Carnevale G, Resca E, et al. Human amniotic fluid stem cells: neural differentiation in vitro and in vivo. Cell Tissue Res 2014; 357: 1-13.
  • 41. Iwasaki K, Ahmadi AR, Qi L, Chen M, Wang W, Katsumata K, et al. Pharmacological mobilization and recruitment of stem cells in rats stops abdominal adhesions after laparotomy. Sci Rep 2019; 9: 7149.
  • 42. Bai X, Liu J, Yuan W, Liu Y, Li W, Cao S, et al. Therapeutic Effect of human amniotic epithelial cells in rat models of intrauterine adhesions. Cell Transplant 2020; 29: 963689720908495.
  • 43. Zhao ZH, Ma XL, Zhao B, Tian P, Ma JX, Kang JY, et al. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell Prolif 2021; 19: e13043.
  • 44. Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomedicine 2020; 15: 5911-26.
  • 45. Zhang Y, Wang WT, Gong CR, Li C, Shi M. Combination of olfactory ensheathing cells and human umbilical cord mesenchymal stem cell-derived exosomes promotes sciatic nerve regeneration. Neural Regen Res 2020; 15: 1903-11.
  • 46. Chen W, Liu X, Chen Q, Bao C, Zhao L, Zhu Z, et al. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs. J Tissue Eng Regen Med 2018; 12: 191-203.
  • 47. Chen W, Liu J, Manuchehrabadi N, Weir MD, Zhu Z, Xu HH. Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects. Biomaterials 2013; 34: 9917-25.
  • 48. Kouroupis D, Churchman SM, English A, Emery P, Giannoudis PV, McGonagle D, et al. Assessment of umbilical cord tissue as a source of mesenchymal stem cell/endothelial cell mixtures for bone regeneration. Regen Med 2013; 8: 569-81.
  • 49. Ye B, Luo X, Li Z, Zhuang C, Li L, Lu L, et al. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing. Mater Sci Eng C Mater Biol Appl 2016; 68: 43-51.
  • 50. Benyamini Y, Gozlan M, Kokia E. Variability in the difficulties experienced by women undergoing infertility treatments. Fertil Steril 2005; 83: 275-83.
  • 51. Ranjbar F, Behboodi-Moghadam Z, Borimnejad L, Ghaffari SR, Akhondi MM. Experiences of infertile women seeking assisted pregnancy in iran: a qualitative study. J Reprod Infertil 2015; 16: 221-8.
  • 52. Macaluso M, Wright-Schnapp TJ, Chandra A, Johnson R, Satterwhite CL, Pulver A, et al. A public health focus on infertility prevention, detection, and management. Fertil Steril 2010; 93: 16.e1-10.
  • 53. Fidler AT, Bernstein J. Infertility: from a personal to a public health problem. Public Health Rep 1999; 114: 494-511.
  • 54. Loukogeorgakis SP, De Coppi P. Stem cells from amniotic fluid- -potential for regenerative medicine. Best Pract Res Clin Obstet Gynaecol 2016; 31: 45-57.
  • 55. Song T, Zhao X, Sun H, Li X, Lin N, Ding L, et al. Regeneration of uterine horns in rats using collagen scaffolds loaded with human embryonic stem cell-derived endometrium-like cells. Tissue Eng Part A 2015; 21: 353-61.
  • 56. Kuramoto G, Hammad IA, Einerson BD, Allshouse AA, Debbink M, Grainger DW, et al. Human mesenchymal stem cell sheets improve uterine incision repair in a rodent hysterotomy model. Am J Perinatol 2020. doi: 10.1055/s-0040-1721718
  • 57. Tang YQ, Gan L, Xu Q, Wang S, Li JJ, Duan H. Effects of human umbilical cord mesenchymal stem cells on intrauterine adhesions in a rat model. Int J Clin Exp Pathol 2016; 9: 12119-29.
  • 58. Wang D, Chen K, Du WT, Han ZB, Ren H, Chi Y, et al. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res 2010; 316: 2414-23.
  • 59. Zhu SF, Hu HB, Xu HY, Fu XF, Peng DX, Su WY, et al. Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries. J Cell Mol Med 2015; 19: 2108-17.
  • 60. Song D, Zhong Y, Qian C, Zou Q, Ou J, Shi Y, et al. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamideinduced premature ovarian failure rat model. Biomed Res Int 2016; 2016: 2517514.
  • 61. Zhang X, Zhang L, Li Y, Yin Z, Feng Y, Ji Y. Human umbilical cord mesenchymal stem cells (hUCMSCs) promotes the recovery of ovarian function in a rat model of premature ovarian failure (POF). Gynecol Endocrinol 2021; 37: 353-7.
  • 62. Wang Z, Wei Q, Wang H, Han L, Dai H, Qian X, et al. Mesenchymal stem cell therapy using human umbilical cord in a rat model of autoimmune-induced premature ovarian failure. Stem Cells Int 2020; 2020: 3249495.
  • 63. Elfayomy AK, Almasry SM, El-Tarhouny SA, Eldomiaty MA. Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: Possible direct and indirect effects. Tissue Cell 2016; 48: 370-82.
  • 64. Pan Y, Zhang L, Zhang X, Hu C, Liu R. Biological and biomechanical analysis of two types of mesenchymal stem cells for intervention in chemotherapy-induced ovarian dysfunction. Arch Gynecol Obstet 2017; 295: 247-52.
  • 65. Fuchs JR, Kaviani A, Oh JT, LaVan D, Udagawa T, Jennings RW, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg 2004; 39: 834-8.
  • 66. Kunisaki SM, Freedman DA, Fauza DO. Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg 2006; 41: 675-82.
  • 67. Sun Q, Li F, Li H, Chen RH, Gu YZ, Chen Y, et al. Amniotic fluid stem cells provide considerable advantages in epidermal regeneration: B7H4 creates a moderate inflammation microenvironment to promote wound repair. Sci Rep 2015; 5: 11560.
  • 68. Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, Varimezova R, et al. Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol 2012; 23: 661-73.
  • 69. Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A, et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev 2012; 21: 1911-23.
  • 70. Prasongchean W, Bagni M, Calzarossa C, De Coppi P, Ferretti P. Amniotic fluid stem cells increase embryo survival following injury. Stem Cells Dev 2012; 21: 675-88.
  • 71. Chiavegato A, Bollini S, Pozzobon M, Callegari A, Gasparotto L, Taiani J, et al. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol 2007; 42: 746-59.
  • 72. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100-6.
  • 73. Gan L, Duan H, Xu Q, Tang YQ, Li JJ, Sun FQ, et al. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions. Cytotherapy 2017; 19: 603-16.
APA Aygün E, Tümentemur G (2022). Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study. , 154 - 166. 10.4274/jtgga.galenos.2022.2022-1-14
Chicago Aygün Elif Ganime,Tümentemur Gamze Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study. (2022): 154 - 166. 10.4274/jtgga.galenos.2022.2022-1-14
MLA Aygün Elif Ganime,Tümentemur Gamze Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study. , 2022, ss.154 - 166. 10.4274/jtgga.galenos.2022.2022-1-14
AMA Aygün E,Tümentemur G Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study. . 2022; 154 - 166. 10.4274/jtgga.galenos.2022.2022-1-14
Vancouver Aygün E,Tümentemur G Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study. . 2022; 154 - 166. 10.4274/jtgga.galenos.2022.2022-1-14
IEEE Aygün E,Tümentemur G "Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study." , ss.154 - 166, 2022. 10.4274/jtgga.galenos.2022.2022-1-14
ISNAD Aygün, Elif Ganime - Tümentemur, Gamze. "Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study". (2022), 154-166. https://doi.org/10.4274/jtgga.galenos.2022.2022-1-14
APA Aygün E, Tümentemur G (2022). Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study. Journal of the Turkish-German Gynecological Association, 23(3), 154 - 166. 10.4274/jtgga.galenos.2022.2022-1-14
Chicago Aygün Elif Ganime,Tümentemur Gamze Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study. Journal of the Turkish-German Gynecological Association 23, no.3 (2022): 154 - 166. 10.4274/jtgga.galenos.2022.2022-1-14
MLA Aygün Elif Ganime,Tümentemur Gamze Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study. Journal of the Turkish-German Gynecological Association, vol.23, no.3, 2022, ss.154 - 166. 10.4274/jtgga.galenos.2022.2022-1-14
AMA Aygün E,Tümentemur G Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study. Journal of the Turkish-German Gynecological Association. 2022; 23(3): 154 - 166. 10.4274/jtgga.galenos.2022.2022-1-14
Vancouver Aygün E,Tümentemur G Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study. Journal of the Turkish-German Gynecological Association. 2022; 23(3): 154 - 166. 10.4274/jtgga.galenos.2022.2022-1-14
IEEE Aygün E,Tümentemur G "Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study." Journal of the Turkish-German Gynecological Association, 23, ss.154 - 166, 2022. 10.4274/jtgga.galenos.2022.2022-1-14
ISNAD Aygün, Elif Ganime - Tümentemur, Gamze. "Effects of stem cells and amniotic fluid on uterus and ovaries in a rat model of abdominal adhesions: a controlled study". Journal of the Turkish-German Gynecological Association 23/3 (2022), 154-166. https://doi.org/10.4274/jtgga.galenos.2022.2022-1-14