Yıl: 2021 Cilt: 8 Sayı: 3 Sayfa Aralığı: 1254 - 1263 Metin Dili: İngilizce DOI: 10.31202/ecjse.912710 İndeks Tarihi: 10-10-2022

Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications

Öz:
ielectric Elastomer Actuator (DEA) consists of a thin dielectric elastomer membrane sandwiched between two electrode layers. When low current high voltage is applied to the two conductive layers, opposite loads occur on the surface which tends to pull one another. This voltage application causes thinning in width and expansion in surface area. DEAs are the favorite subject of research due to their low-cost advantages, fast response, high energy density, wide deformation, and softness. Due to the rigidity of the electric motors and the metal components of the robot, soft-acting robots using DEA are preferred to perform complex tasks instead of conventional robots. Robots with DEA have higher flexibility and better adaptability. Therefore, soft robots are popular topic in robotics research. DEAs are the best candidate materials for next-generation soft robot actuators and artificial muscles. In this study, simulation of the robotic systems has been realized by using DEAs calculation methods. Simulation results were compared with the data obtained from the application. This study will be the source of future studies on the subject. In the simulation, Matlab 2016 student and Labview Home and Students programs were used.
Anahtar Kelime: Artificial muscle electro-active actuator soft actuator dielectric elastomer electromechanical efficiency conductive elastomer.

Yapay Kas Uygulamalarında Kullanılan Dielektrik Elastomer Aktuatörlerin İncelenmesi ve Simülasyonu

Öz:
Dielektrik Elastomer Aktüatör (DEA), iki elektrot tabaka arasına sıkıştırılmış ince bir dielektrik elastomer membrandan oluşur. İki iletken tabakaya düşük akımlı yüksek gerilim uygulandığında, birbirini çekme eğiliminde olan yüzeyde zıt yükler meydana gelir. Bu da eninde incelmeye ve yüzey alanında genişlemeye yol açar. DEA'lar, düşük maliyet avantajları, hızlı tepki, yüksek enerji yoğunluğu, geniş deformasyon ve yumuşaklık gibi özellikleri sebebiyle araştırma konusudur. Robot üretim teknolojisinde kullanılan elektrik motorları ve robotun metal bileşenlerinin sertliği sebebiyle, karmaşık görevleri yerine getirmek için DEA kullanan yumuşak mekanizmalı robotlar tercih edilir. DEA özellikli robotlar daha yüksek esnekliğe ve daha iyi uyarlanabilirliğe sahiptir. Bu nedenle, yumuşak robotlar robotik araştırmada popüler konulardandır. DEA’lar gelecek nesil yumuşak robot aktüatörleri ve yapay kaslar için en iyi aday malzemelerdendir. Bu çalışmada, DEA’ların hesaplama yöntemlerinden faydalanılarak simülasyonu gerçekleştirilmiştir. Simülasyon sonuçları uygulama neticesi elde edilen verilerle mukayese edilmiştir. Konuyla ilgili bundan sonraki yapılacak çalışmalara kaynak olabilecektir. Simülasyonda Matlab 2016 student ve Labview Home andStudents programlarından faydalanılmıştır.
Anahtar Kelime: Yapay kas elektro-aktif aktüatör yumuşak aktüatör dielektrik elastomer elektro-mekanik verimlilik iletken elastomer.

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Liu, L., Liu, Y., Yu, K., Leng, J., Thermoelectromechanical stability of dielectric elastomers undergoing temperature variation, Mechanics of Materials, 2014, 72:33-45.
  • [2]. Pelrine, R., Kornbluh,R., Joseph, J., Heydt, R., Pei, Q., Chiba, S., High-field deformation of elastomeric dielectrics for actuators, Materials Science and Engineering: C, 2000, 11(2):89- 100.
  • [3]. Plante, J. S., Dubowsky, S., On the performance mechanisms of dielectric elastomer actuators, Sensors and Actuators A: Physical, 2007, 137(1):96-109.
  • [4]. Carpi, F., Bauer, S., De Rossi, D., Stretching dielectric elastomer performance, Science, 2010, 330(6012):1759-1761.
  • [5]. Koh, S. J. A., Keplinger, C., Li, T., Bauer, S., Suo, Z., Dielectric elastomer generators: How much energy can be converted?, IEEE/ASME Transactions on mechatronics, 2010, 16(1):33- 41.
  • [6]. Keplinger, C., Li, T., Baumgartner, R., Suo, Z., Bauer, S., Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation, Soft Matter, 2012, 8(2): 285-288.
  • [7]. Huang, J., Li, T., Chiang Foo, C., Zhu, J., Clarke, D. R., Suo, Z., Giant, voltage-actuated deformation of a dielectric elastomer under dead load, Applied Physics Letters, 2012, 100(4): 041911.
  • [8]. An, L., Wang, F., Cheng, S., Lu, T., Wang, T. J., Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube, Smart Materials and Structures, 2015, 24(3): 035006.
  • [9]. Landgraf, M., Ollech, J., Klemm, T., Schaude, J., Reitelshöfer, S., Franke, J., Lightweight Control Method for Dielectric Elastomer Actuators as Self-Sensing Artificial Muscles, In 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), 2018, pp. 65- 70.
  • [10]. Bar-Cohen, Y., Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, 2004, (Vol. 136). SPIE press.
  • [11]. Brochu, P., Pei, Q., Dielectric elastomers for actuators and artificial muscles, Electroactivity in polymeric materials, 2012, 1-56.
  • [12]. Carpi, Federico, SMELA, Elisabeth (ed.), Biomedical applications of electroactive polymer actuators, John Wiley & Sons, 2009.
  • [13]. Pelrine, R. E., Kornbluh, R. D., Joseph, J. P., Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sensors and Actuators A: Physical, 1998, 64(1): 77-85.
  • [14]. Pelrine, R., Kornbluh, R. D., Eckerle, J., Jeuck, P., Oh, S., Pei, Q., Stanford, S., Dielectric elastomers: generator mode fundamentals and applications. In Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, 2001, 4329:148-156.
  • [15]. Jean-Mistral, C., Basrour, S., Chaillout, J. J., Bonvilain, A., A complete study of electroactive polymers for energy scavenging: modelling and experiments, arXiv preprint arXiv, 2008, 0802.3046.
  • [16]. White, Edward L., Yuen, Michelle C., Kramer, Rebecca K. Distributed sensing in capacitive conductive composites, In: IEEE SENSORS, IEEE, 2017, p. 1-3.
  • [17]. Liu, Y., Liu, L., Zhang, Z., Leng, J., Dielectric elastomer film actuators: characterization, experiment and analysis, Smart Materials and Structures, 2009, 18(9):095024.
  • [18]. Plante, J. S., Dubowsky, S., On the properties of dielectric elastomer actuators and their design implications, Smart materials and Structures, 2007, 16.2: S227.
  • [19]. Carpi, F., Chiarelli, P., Mazzoldi, A., De Rossi, D., Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads, Sensors and Actuators A: Physical, 2003, 107(1):85-95.
  • [20]. Michel, S., Zhang, X. Q., Wissler, M., Löwe, C., Kovacs, G., A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators, Polymer international, 2010, 59(3):391-399.
  • [21]. Kornbluh, R. D., Pelrine, R., Pei, Q., Heydt, R., Stanford, S., Oh, S., Eckerle, J., Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures. In Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, 2002, Vol. 4698:254-270.
  • [22]. Ghazali, F. A. M., Mah, C. K., AbuZaiter, A., Chee, P. S., Ali, M. S. M., Soft dielectric elastomer actuator micropump, Sensors and Actuators A: Physical, 2017, 263:276-284.
  • [23]. Khanh, V. T. V., Mathew, A. T., Short, J. S., Quek, Z. F., Ang, M. H., & Koh, S. J. A., Displacement improvement from variable pre-stretch diaphragm type Dielectric Elastomer Actuator, In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2018, pp. 545-550.
  • [24]. Carpi, F., Bauer, S., De Rossi, D., Stretching dielectric elastomer performance, Science, 2010, 330(6012):1759-1761.
  • [25]. Kasahara, T., Mizushima, M., Shinohara, H., Obata, T., Futakuchi, T., Shoji, S., Mizuno, J., Simple and low-cost fabrication of flexible capacitive tactile sensors, Japanese Journal of Applied Physics, 2011, 50(1R): 016502.
  • [26]. Kim, D., Lee, C. H., Kim, B. C., Lee, D. H., Lee, H. S., Nguyen, C. T., Choi, H. R., Six-axis capacitive force/torque sensor based on dielectric elastomer, In Electroactive Polymer Actuators and Devices (EAPAD), 2013, 8687: 86872J.
  • [27]. Simone, F., Linnebach, P., Rizzello, G., Seelecke, S., FE simulation of a dielectric elastomer actuator (DEA) driven Contactor in COMSOL, In VDI Fachtagung Mechatronik, 2017, pp. 244-249.
  • [28]. Wissler, M., Mazza, E., Modeling and simulation of dielectric elastomer actuators, Smart Materials and structures, 2005, 14(6): 1396.
  • [29]. Luo, K., Tian, Q., Hu, H., Dynamic modeling, simulation and design of smart membrane systems driven by soft actuators of multilayer dielectric elastomers, Nonlinear Dynamics, 2020, 102(3):1463-1483.
  • [30]. Prechtl, J., Kunze, J., Seelecke, S., Rizzello, G., Soft Robotic Module Actuated by Silicone- Based Rolled Dielectric Elastomer Actuators-Modeling and Simulation, In ACTUATOR; International Conference and Exhibition on New Actuator Systems and Applications, 2021, pp. 1-4.
APA YAZ M, karaman i, Şahin E (2021). Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications. , 1254 - 1263. 10.31202/ecjse.912710
Chicago YAZ Mustafa,karaman ibrahim,Şahin Erdem Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications. (2021): 1254 - 1263. 10.31202/ecjse.912710
MLA YAZ Mustafa,karaman ibrahim,Şahin Erdem Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications. , 2021, ss.1254 - 1263. 10.31202/ecjse.912710
AMA YAZ M,karaman i,Şahin E Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications. . 2021; 1254 - 1263. 10.31202/ecjse.912710
Vancouver YAZ M,karaman i,Şahin E Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications. . 2021; 1254 - 1263. 10.31202/ecjse.912710
IEEE YAZ M,karaman i,Şahin E "Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications." , ss.1254 - 1263, 2021. 10.31202/ecjse.912710
ISNAD YAZ, Mustafa vd. "Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications". (2021), 1254-1263. https://doi.org/10.31202/ecjse.912710
APA YAZ M, karaman i, Şahin E (2021). Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications. El-Cezerî Journal of Science and Engineering, 8(3), 1254 - 1263. 10.31202/ecjse.912710
Chicago YAZ Mustafa,karaman ibrahim,Şahin Erdem Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications. El-Cezerî Journal of Science and Engineering 8, no.3 (2021): 1254 - 1263. 10.31202/ecjse.912710
MLA YAZ Mustafa,karaman ibrahim,Şahin Erdem Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications. El-Cezerî Journal of Science and Engineering, vol.8, no.3, 2021, ss.1254 - 1263. 10.31202/ecjse.912710
AMA YAZ M,karaman i,Şahin E Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications. El-Cezerî Journal of Science and Engineering. 2021; 8(3): 1254 - 1263. 10.31202/ecjse.912710
Vancouver YAZ M,karaman i,Şahin E Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications. El-Cezerî Journal of Science and Engineering. 2021; 8(3): 1254 - 1263. 10.31202/ecjse.912710
IEEE YAZ M,karaman i,Şahin E "Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications." El-Cezerî Journal of Science and Engineering, 8, ss.1254 - 1263, 2021. 10.31202/ecjse.912710
ISNAD YAZ, Mustafa vd. "Investigation And Simulation of Dielectric Elastomer Actuators Used in Artificial Muscle Applications". El-Cezerî Journal of Science and Engineering 8/3 (2021), 1254-1263. https://doi.org/10.31202/ecjse.912710