Yıl: 2021 Cilt: 8 Sayı: 3 Sayfa Aralığı: 1286 - 1308 Metin Dili: İngilizce DOI: 10.31202/ecjse.916532 İndeks Tarihi: 10-10-2022

A Survey on Security Attacks with Remote Ground Robots

Öz:
ontemporary healthcare systems contain diverse computing devices that construct very complex systems to manage patients‘ data more efficiently. Connected computing devices, such as the Internet of Things (IoT) that may have limited processing powers, have contributed more than ever with the advent of wearable body area networks (WBAN). These devices are connected to other medical devices to share sensitive health data with corresponding entities like hospitals, research institutions, and insurance companies. Since health data are very sensitive, they should be always available to authorized entities and unavailable to other entities. Moreover, COVID-19 pandemic has added additional value to health data which case increases cyber-attacks on (Electronic health) E-health systems with different tools dramatically. In this paper, several cyber-attacks on E- health systems are explored. Particularly, we have focused on attacks to IoT based wearable health devices for body area networks. The paper contains the architecture of wearable health devices to show the potential attack surface. One of the main contributions of the paper is to present cyber-attacks on wearable e-health devices with ground robots. A tactical ground robot is portable devices that may be used to carry out several cyber-attacks on E-health systems. Moreover, the paper contains analyses of the attacks with ground robots.
Anahtar Kelime: Cyber security E-health COVID-19 IoT Body Area Networks Ground Robot

Yer Robotlarıyla Yapılan Uzaktan Siber Saldırılara İlişkin Bir İnceleme

Öz:
Sağlık hizmetleri, hastaların verilerini daha verimli bir şekilde yönetmek için karmaşık sistemler oluşturan çeşitli bilgi işlem cihazları içerirler. Sınırlı işlem gücüne sahip olan, bir iletişim ağına bağlı bilgi işlem cihazları, Nesnelerin İnterneti (IoT) gibi, giyilebilir vücut alanı ağlarının (WBAN) ortaya çıkmasıyla daha yararlı bir hale geldi. Bu cihazlar, hassas sağlık verilerini hastaneler, araştırma kurumları ve sigorta şirketleri gibi ilgili kuruluşlarla paylaşmak için diğer tıbbi cihazlara bağlanır. Sağlık verileri çok hassas olduğundan, bu veriler yetkili kuruluşlar tarafından her zaman erişilebilir olmalı ve diğer kuruluşlar tarafından kullanılamaz olmalıdır. Bununla beraber, COVID-19 salgını sağlık verilerine ek bir değer katmıştır ve bu durum, farklı araçlarla Elektronik sağlık (E-sağlık) sistemlerine yapılan siber saldırıların sayısını önemli ölçüde artırmıştır. Bu yazıda, E-sağlık sistemlerine yönelik siber saldırlar incelenmiştir. Özellikle IoT tabanlı giyilebilir sağlık cihazlarına yönelik saldırılara odaklanılmıştır. Makalede, potansiyel saldırı yüzeyini göstermek için giyilebilir sağlık cihazlarının mimarisi de işlenmiştir. Makalenin ana katkılarından biri, insansız kara robotları ile giyilebilir E- sağlık cihazlarına yönelik potansiyel siber saldırıları göstermektir. Taktiksel bir kara robotu, E-sağlık sistemlerine çeşitli siber saldırılar gerçekleştirmek için kullanılabilen taşınabilir bir cihazdır. Ayrıca makale, bu kara robotları ile yapılan saldırıların analizlerini de içermektedir.
Anahtar Kelime: Siber Güvenlik E-sağlık COVID-19 Nesnelerin Interneti Vücut Ağları Kara Robotu

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Butpheng C., Yeh K., and Xiong H., Security and privacy in IoT-cloud-based e-health systems—a comprehensive review, Symmetry, 2020, 12:1191.
  • [2]. Ahmed M., and Ullah A. SSM. B., False data injection attacks in healthcare, In Australasian Conference on Data Mining, Springer, 2017, 192–202.
  • [3]. Islam S. M. R., Kwak D., Kabir M. H., Hossain M., and Kwak H., The internet of things for health care: A comprehensive survey, IEEE Access, 2015, 3:678–708.
  • [4]. Holler J., Tsiatsis V., Mulligan C., Karnouskos S., Avesand S., and Boyle D., From Machine- to-Machine to the Internet of Things: Introduction to a New Age of Intelligence, Academic Press, Inc. 6277 Sea Harbor Drive Orlando, FL, United States, 2014.
  • [5]. Yu L., Lu Y., and Zhu X. J., Smart hospital based on internet of things, 2012, Journal of Networks, 7(10):1654-1661.
  • [6]. Efe A., Aksoz E., Hanecioğlu N, and Yalman Ş. N., Smart security of IoT against to ddos attacks, International Journal of Innovative Engineering Applications, 2019, 2:35 – 43.
  • [7]. Al-Issa Y., Ottom M. A., and Tamrawi A., E-health cloud security challenges: A survey, Journal of Healthcare Engineering, 2019, 2019:1–15.
  • [8]. Kintzlinger M., and Nissim N., Keep an eye on your personal belongings! the security of personal medical devices and their ecosystems, Journal of Biomedical Informatics, 2019, 95:103233.
  • [9]. McCall M. K., Skutsch M. M., and Honey-Roses J., Surveillance in the COVID-19 normal: Tracking, tracing, and snooping–trade-offs in safety and autonomy in the e-city, International Journal of E-Planning Research, 2021, 10(2):27–44.
  • [10]. Hiremath S, Yang G., and Mankodiya K., Wearable Internet of things: Concept, architectural components and promises for person-centered healthcare, 4th International Conference on Wireless Mobile Communication and Healthcare, Athens, Greece, November 3-5, 2014, 304– 307.
  • [11]. Otto C., Milenkovic A., Sanders C., and Jovanov E., System architecture of a wireless body area sensor network for ubiquitous health monitoring, Journal of Mobile Multimedia, 2006, 1:307–326.
  • [12]. Al-Janabi S., Al-Shourbaji I., Shojafar M., and Shamshirband S., Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications, Egyptian Informatics Journal, 2017, 18(2):113–122.
  • [13]. Karmakar N. C., Yang Y., and Rahim A., Microwave Sleep Apnoea Monitoring, Series in BioEngineering, Springer, 2018.
  • [14]. Darwish A., and Hassanien A. E., Wearable and implantable wireless sensor network solutions for healthcare monitoring, Sensors, 2011, 11(6):5561–5595.
  • [15]. Milenkovic A., Otto C., and Jovanov E., Wireless sensor networks for personal health monitoring: Issues and an implementation, Computer Communications, 2006, 29:2521–2533.
  • [16]. Fu K., and Xu W., Risks of trusting the physics of sensors, Communications of the ACM, 2018, 61(2):20–23.
  • [17]. Halperin D., Heydt-Benjamin T. S., Ransford B., Clark S.S., Defend B., Morgan W., Fu K., Kohno T., and Maisel W. H., Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses, In 2008 IEEE Symposium on Security and Privacy (SP 2008), Oakland, California, USA, 2008, 129–142.
  • [18]. Trippel T., Weisse O., Xu W., Honeyman P., and Fu K., Walnut: Waging doubt on the integrity of mems accelerometers with acoustic injection attacks, In 2017 IEEE European symposium on security and privacy (EuroS&P), Paris, France, 3–18, April 26-28, 2017.
  • [19]. Xue Q., and Chuah M. C., New attacks on RNN based healthcare learning system and their detections, Smart Health, 2018, 9:144–157.
  • [20]. Ly B., and Ly R., Cybersecurity in unmanned aerial vehicles, Journal of Cyber Security Technology, 2020, 1–18.
  • [21]. Kristiyanto Y., and Ernastuti E., Analysis of de-authentication attack on IEEE 802.11 connectivity based on IoT technology using external penetration test, Communication and Information Technology Journal, 2020, 14(1):45–51.
  • [22]. Sethuraman S. C., Vijayakumar V., and Walczak S., Cyber-attacks on healthcare devices using unmanned aerial vehicles, Journal of medical systems, 2020, 44(1):1–10.
  • [23]. Hanspach M., and Goetz M., On covert acoustical mesh networks in air, arXiv preprint arXiv:1406.1213, 2014.
  • [24]. Karchowdhury S., and Sen M., Survey on attacks on wireless body area network‖, International Journal of Computational Intelligence & IoT, Forthcoming, 2019, 638-644.
  • [25]. Eian I. C., Yong L. K., Li M. J. X., Qi Y. H., and Fatima Z., Cyber-attacks in the era of COVID -19 and possible solution domains, Preprints, 2020.
  • [26]. Khan N. A., Brohi S. N., and Zaman N., Ten deadly cyber security threats amid COVID-19 pandemic, Preprints, 2020.
  • [27]. Kamal M, Aljohani A., and Alanazi E., IoT meets COVID-19: Status, challenges, and opportunities, arXiv preprint arXiv:2007.12268, 2020.
  • [28]. Lallie H. S., Shepherd L. A., Nurse J, Erola A., Epiphaniou G., Maple C., and Bellekens X., Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber- attacks during the pandemic, arXiv preprint arXiv:2006.11929, 2020.
  • [29]. Gvili Y., Security analysis of the COVID-19 contact tracing specifications by apple inc. and google inc, IACR Cryptol. ePrint Arch., 2020, 2020:428.
  • [30]. Chamola V., Hassija V., Gupta V., and Guizani M., A comprehensive review of the COVID- 19 pandemic and the role of iot, drones, ai, blockchain, and 5g in managing its impact, IEEE Access, 2020, 8:90225– 90265. [31]. Rahman A., Hossain M. S., Alrajeh N A., and Alsolami F., Adversarial examples–security threats to COVID-19 deep learning systems in medical IoT devices, IEEE Internet of Things Journal, 2020, 99:1-1.
  • [32]. Pranggono B., and Arabo A., COVID-19 pandemic cybersecurity issues, Internet Technology Letters, 2020, 4(2):1-6, 2020.
  • [33]. Wueest C., The continued rise of DDOS attacks. White Paper: Security Response‖ Symantec Corporation, 2014.
  • [34]. Mirkovic J., and Reiher P., A taxonomy of DDOS attack and DDOS defense mechanisms, ACM SIGCOMM Computer Communication Review, 2004, 34(2):39–53.
  • [35]. Pathan A. K., Lee H., and Hong C. S., Security in wireless sensor networks: issues and challenges, In 2006 8th International Conference Advanced Communication Technology, Phoenix Park, Korea, 1043-1048, 20-22 Feb., 2006.
  • [36]. Chadd A., Ddos attacks: past, present and future, Network Security, 2018, 2018(7):13–15.
  • [37]. Zaroo P., A survey of ddos attacks and some ddos defense mechanisms, Advanced Information Assurance (CS 626), 2002.
  • [38]. Mpitziopoulos A., Gavalas D., Konstantopoulos C., and Pantziou G., A survey on jamming attacks and countermeasures in WSNS, IEEE Communications Surveys & Tutorials, 2009, 11(4):42– 56.
  • [39]. Chamola V., Kotesh P., Agarwal A., Gupta N. N., and Guizani M., A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques, Ad Hoc Networks, 2021, 111:102324.
  • [40]. Chuyang Z., Shang G., Jianyi X., Jianwen H., Qiang L., Kaitong H., Jutao H., and Ruiwen M., Method research and realization of noise fm jamming based on DDS technology, Journal of Physics: Conference Series, 2020, 1437, 012122.
  • [41]. Zheng F., Haitao L., and Yiming Q., Cognitive anti-jamming receiver under phase noise in high frequency bands, Journal of Systems Engineering and Electronics, 2018, 29(1):31–38.
  • [42]. Kolias C., Kambourakis G., Stavrou A., and Gritzalis S., Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset, IEEE Communications Surveys & Tutorials, 2015, 18(1):184–208.
  • [43]. Cho E. J., Kim J. H., and Hong C. S., Attack model and detection scheme for botnet on 6lowpan, Management Enabling the Future Internet for Changing Business and New Computing Services, Springer, Berlin, Heidelberg, 2009, 515–518.
  • [44]. Krimmling J., and Peter S., Integration and evaluation of intrusion detection for coap in smart city applications, In 2014 IEEE Conference on Communications and Network Security, San Francisco, CA, USA, 2014, 73–78.
  • [45]. Gong S., Ochiai H., and Esaki H., Scan based self-anomaly detection: Client-side mitigation of channel-based man-in-the-middle attacks against wi-fi, In 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 1498– 1503, 13-17 July, 2020.
  • [46]. Modi V., and Parekh C., Detection & analysis of evil twin attack in wireless network, International Journal of Advanced Research in Computer Science, 2017, 8(5).
  • [47]. Das S. K., Kant K., and Zhang N., Handbook on securing cyber-physical critical infrastructure, Elsevier, 2012.
  • [48]. Zeadally S., Isaac J. T., and Baig Z., Security attacks and solutions in electronic health (e- health) systems, Journal of medical systems, 2016, 40(12):1– 12.
  • [49]. Al Ameen M., Liu J., and Kwak K., Security and privacy issues in wireless sensor networks for healthcare applications, Journal of medical systems, 2012, 36(1):93–101.
  • [50]. Muscat I., What are injection attacks. Dostopno prek, https://www. acunetix. com/blog/articles/injectionattacks, 2017.
  • [51]. Long N., and Thomas R., Trends in denial-of-service attack technology, CERT Coordination Center, 2001, 648–651.
  • [52]. Perakovic D., Perisa M., and Cvitic I., Analysis of the iot impact on volume of ddos attacks., XXXIII Simpozijum o novim tehnologijama u postanskom i telekomunikacionom saobracaju–PosTel, 2015, 2015:295–304.
  • [53]. Mahjabin T., Xiao Y, Sun G, Jiang W., ―A survey of distributed denial-of-service attack, prevention, and mitigation techniques‖, 2017, International Journal of Distributed Sensor Networks, 13(12):1550147717741463.
  • [54]. Alomari E., Manickam S., Gupta BB., Karuppayah S., and Alfaris R., Botnetbased distributed denial of service (DDOS) attacks on web servers: classification and art, arXiv preprint arXiv:1208.0403, 2012.
  • [55]. McLaughlin L., Bot software spreads, causes new worries, IEEE Distributed Systems Online, 2004, 5(6):1.
  • [56]. Hoque N., Bhattacharyya D. K., and Kalita J. K., Botnet in DDOS attacks: trends and challenges, IEEE Communications Surveys & Tutorials, 2015, 17(4):2242–2270.
  • [57]. Peng T., Leckie C., and Ramamohanarao K., Protection from distributed denial of service attacks using history-based ip filtering, In IEEE International Conference on Communications, 2003. ICC ‘03., Anchorage, AK, USA, 1:482–486, 20 June, 2003.
  • [58]. Weiler N., Honeypots for distributed denial-of-service attacks, In Proceedings. Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, Pittsburgh, PA, USA, 109–114, 12 June, 2002.
  • [59]. Lee T., Wen C., Chang L., Chiang H., and Hsieh M., A lightweight intrusion detection scheme based on energy consumption analysis in 6lowpan, Advanced Technologies, Embedded and Multimedia for Human-centric Computing, 2014, 1205–1213.
  • [60]. Bindra N., and Sood M., Detecting DDOS attacks using machine learning techniques and contemporary intrusion detection dataset, Automatic Control and Computer Sciences, 2019, 53(5):419–428.
  • [61]. Al-Gethami K. M., Al-Akhras M. T., and Alawairdhi M., Empirical evaluation of noise influence on supervised machine learning algorithms using intrusion detection datasets, Security and Communication Networks, 2021, 2021:1-28.
  • [62]. Liu H., and Lang B., Machine learning and deep learning methods for intrusion detection systems: A survey, Applied Sciences, 2019, 9(20):4396.
  • [63]. Yin C., Zhu Y., Fei J., and He X., A deep learning approach for intrusion detection using recurrent neural networks, IEEE Access, 2017, 5:21954– 21961.
  • [64]. Khan M. A., Karim M., and Kim Y., A scalable and hybrid intrusion detection system based on the convolutional-lstm network, Symmetry, 2019, 11(4):583.
  • [65]. Cheng M., Ling Y., and Wu W. B., Time series analysis for jamming attack detection in wireless networks, In GLOBECOM 2017, IEEE Global Communications Conference, Singapore, 1–7., 4-8 December, 2017.
  • [66]. Dar A. B., Lone A. H., Zahoor S., Khan A. A., and Naaz R., Applicability of mobile contact tracing in fighting pandemic (COVID-19): Issues, challenges and solutions, Computer Science Review, 2020, 100307.
  • [67]. Milliken J., Selis V., Yap K. M., and Marshall A., Impact of metric selection on wireless deauthentication dos attack performance, IEEE Wireless Communications Letters, 2013, 2(5):571–574.
  • [68]. Kolias C., Stavrou A., Voas J., Bojanova I, and Kuhn R., Learning internet of-things security hands-on, IEEE Security & Privacy, 2016, 14(1):37–46.
  • [69]. Arora A., Preventing wireless deauthentication attacks over 802.11 networks, arXiv preprint arXiv:1901.07301, 2018.
  • [70]. Remesh A., Muralidharan D., Raj N., Gopika J., and Binu P. K., Intrusion detection system for IoT devices, In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2020, 826–830.
  • [71]. Park N., Sun K., Foresti S., Butler K., and Saxena N., Security and Privacy in Communication Networks, Springer SecureCom2020, Washington DC, USA, 21-23 October, 2020.
  • [72]. Zou Y., and Wang G., Intercept behavior analysis of industrial wireless sensor networks in the presence of eavesdropping attack, IEEE Transactions on Industrial Informatics, 2016, 12(2):780–787.
  • [73]. Li C., Raghunathan A., and Jha N. K., Hijacking an insulin pump: Security attacks and defenses for a diabetes therapy system, In 2011 IEEE 13th International Conference on e- Health Networking, Applications and Services, Location: Columbia, MO, USA, 13-15 June, 2011, 150–156.
  • [74]. Challa S., Das A. K., Odelu V., Kumar N., Kumari S., Khan M. K., and Vasilakos A. V., An efficient ecc-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks, Computers Electrical Engineering, 2018, 69:534–554.
  • [75]. Yoo H., Song S., Cho N., and Kim H., Low energy on-body communication for BSN, In 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), Aachen University, Germany, 26-28 March, 2007, 15–20.
  • [76]. Baldus H., Corroy S., Fazzi A., Klabunde K., and Schenk T. Human-centric connectivity enabled by body-coupled communications, IEEE Communications Magazine, 2009, 47(6):172–178.
  • [77]. Goel S., and Negi R., Guaranteeing secrecy using artificial noise, IEEE transactions on wireless communications, 2008, 7(6):2180–2189.
  • [78]. Rabbachin A., Conti A., and Win M. Z., Intentional network interference for denial of wireless eavesdropping, In 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011, Houston, Texas, USA, 5-9 December, 2011, 1–6.
  • [79]. Tang X., Liu R., Spasojevic P., and Poor H. V., Interference assisted secret communication, IEEE Transactions on Information Theory, 2011, 57(5):3153–3167.
  • [80]. Tekin E., and Yener A., The gaussian multiple access wire-tap channel: wireless secrecy and cooperative jamming, In 2007 Information Theory and Applications Workshop, La Jolla, CA, USA, 29 Jan.-2 Feb., 2007, 404–413.
  • [81]. Endo Y., Arkin R. C., and Collins T. R., Tactical mobile robot mission specification and execution, Georgia Tech, 1999, 150-163.
  • [82]. Donno M. D., Dragoni N., Giaretta A., and Spognardi A., Analysis of DDOS-capable IoT malwares, 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 3-6 September, 2017, 807–816.
  • [83]. Dulik M., Network attack using TCP protocol for performing dos and ddos attacks, In 2019 Communication and Information Technologies (KIT), Tatranské Zruby, SK, 9-11 October, 2019, 1–6.
  • [84]. Bengag A., Moussaoui O., and Moussaoui M., A new ids for detecting jamming attacks in wban, In 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS), Marrakech, Morocco, 28-30 October, 2019, 1–5.
  • [85]. Xu W., Ma K., Trappe W., and Zhang Y., Jamming sensor networks: attack and defense strategies, IEEE Network, 2006, 20(3):41–47.
  • [86]. Namvar N., Saad W., Bahadori N., and Kelley B., Jamming in the internet of things: A game- theoretic perspective, In IEEE Global Communications Conference (GLOBECOM 2016), Washington, DC, USA, 4-8 December, 2016, 1–6.
  • [87]. Raghuprasad A., Padmanabhan S., Babu M. A., and Binu P. K., Security analysis and prevention of attacks on IoT devices, In 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 28-30 July, 2020, 0876–0880.
  • [88]. Lovinger N., Gerlich T., Martinasek Z., and Malina L., Detection of wireless fake access points, 12th International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT), Brno, Czech Republic, 5-7 October, 2020, 113– 118.
  • [89]. Gonzales H., Bauer K., Lindqvist J., McCoy D., and Sicker D., Practical defenses for evil twin attacks in 802.11, IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 6-10 December, 2010, 1–6.
  • [90]. Asaduzzaman M., Majib M. S., and Rahman M., Wi-fi frame classification and feature selection analysis in detecting evil twin attack, In 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5-7 June, 2020, 1704–1707.
  • [91]. Damghani H., Damghani L., Hosseinian H., and Sharifi R., Classification of attacks on IoT, In 4th International Conference on Combinatorics, Cryptography, Computer Science and Computation, Tehran, Iran, 20-21 November, 2019.
  • [92]. Yang W., Zheng Z., Chen G., Tang Y., and Wang X., Security analysis of a distributed networked system under eavesdropping attacks, IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 67(7):1254–1258.
  • [93]. Bostami B., Ahmed M., and Choudhury S., False data injection attacks in internet of things, In Performability in Internet of Things, Springer, 2019, 47–58.
  • [94]. Javaid M., and Khan I. H., Internet of things (IoT) enabled healthcare helps to take the challenges of COVID-19 pandemic, Journal of Oral Biology and Craniofacial Research, 2021, 11(2):209-2014.
  • [95]. Ndiaye M., Oyewobi S. S., AbuMahfouz A. M., Hancke G. P., Kurien A. M., and Djouani K., IoT in the wake of COVID-19: A survey on contributions, challenges and evolution, IEEE Access, 2020, 8:186821–186839.
  • [96]. Scott B. K., Miller G. T, Fonda S. J., Yeaw R. E., Gaudaen J. C., Pavliscsak H. H., Quinn M. T., and Pamplin J. C., Advanced digital health technologies for COVID-19 and future emergencies, Telemedicine and e-Health, 2020, 26(10):1226–1233.
  • [97]. Sust P. P., Solans O., Fajardo J. C., Peralta M. M., Rodenas P., Gabalda J, Eroles L. G., Comella A., Munoz C. V., and Ribes J. S., Turning the crisis into an opportunity: digital health strategies deployed during the COVID-19 outbreak, JMIR public health and surveillance, 2020, 6(2):e19106.
  • [98]. Pappot N., Taarnhøj G. A., and Pappot H., Telemedicine and e-health solutions for COVID- 19: patients‘ perspective, Telemedicine and e-Health, 2020, 26(7):847–849.
  • [99]. Abie H., and Balasingham I., Risk-based adaptive security for smart IoT in e-health, In Proceedings of the 7th International Conference on Body Area Networks, Oslo Norway, 24- 26 September, 2012, 269–275.
  • [100]. Blobel B., Comparing approaches for advanced e-health security infrastructures, International Journal of Medical Informatics, 2007, 76(5-6):454–459.
  • [101]. Haşıloğlu A, Yücel Altay S, and Ertaş U., Sağlık Hizmetlerinde Aykırı Dataların Kestirimi İçin Mekansal Zamansal Veri Madenciliğinin Kullanımı, El-Cezerî Journal of Sc ence and Engineering, 2017, 4(3): 411-428.
  • [102]. Wilkowska W., and Ziefle M., Privacy and data security in e-health: Requirements from the user‘s perspective, Health Informatics Journal, 2012, 18(3):191–201.
  • [103]. Simpson T. S. L., and Lane B., Security and privacy in e-health: Is it possible?, In 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services, Lisbon, PT, 9-12 October, 2013, 249–253.
  • [104]. Güvernoğlu E., and Razbonyalı C., The Creation of Maze in Order to Hide Data, and the Proposal of Method Based on AES Data Encryption Algorithm, El-Cezerî Journal of Sc ence and Engineering, 2019, 6(3):668-680.
APA Özdöl B, Köseler E, Alçiçek E, Cesur S, Aydemir P, Bahtiyar S (2021). A Survey on Security Attacks with Remote Ground Robots. , 1286 - 1308. 10.31202/ecjse.916532
Chicago Özdöl Batuhan,Köseler Elif,Alçiçek Ezgi,Cesur Süha,Aydemir Perit Jan,Bahtiyar Serif A Survey on Security Attacks with Remote Ground Robots. (2021): 1286 - 1308. 10.31202/ecjse.916532
MLA Özdöl Batuhan,Köseler Elif,Alçiçek Ezgi,Cesur Süha,Aydemir Perit Jan,Bahtiyar Serif A Survey on Security Attacks with Remote Ground Robots. , 2021, ss.1286 - 1308. 10.31202/ecjse.916532
AMA Özdöl B,Köseler E,Alçiçek E,Cesur S,Aydemir P,Bahtiyar S A Survey on Security Attacks with Remote Ground Robots. . 2021; 1286 - 1308. 10.31202/ecjse.916532
Vancouver Özdöl B,Köseler E,Alçiçek E,Cesur S,Aydemir P,Bahtiyar S A Survey on Security Attacks with Remote Ground Robots. . 2021; 1286 - 1308. 10.31202/ecjse.916532
IEEE Özdöl B,Köseler E,Alçiçek E,Cesur S,Aydemir P,Bahtiyar S "A Survey on Security Attacks with Remote Ground Robots." , ss.1286 - 1308, 2021. 10.31202/ecjse.916532
ISNAD Özdöl, Batuhan vd. "A Survey on Security Attacks with Remote Ground Robots". (2021), 1286-1308. https://doi.org/10.31202/ecjse.916532
APA Özdöl B, Köseler E, Alçiçek E, Cesur S, Aydemir P, Bahtiyar S (2021). A Survey on Security Attacks with Remote Ground Robots. El-Cezerî Journal of Science and Engineering, 8(3), 1286 - 1308. 10.31202/ecjse.916532
Chicago Özdöl Batuhan,Köseler Elif,Alçiçek Ezgi,Cesur Süha,Aydemir Perit Jan,Bahtiyar Serif A Survey on Security Attacks with Remote Ground Robots. El-Cezerî Journal of Science and Engineering 8, no.3 (2021): 1286 - 1308. 10.31202/ecjse.916532
MLA Özdöl Batuhan,Köseler Elif,Alçiçek Ezgi,Cesur Süha,Aydemir Perit Jan,Bahtiyar Serif A Survey on Security Attacks with Remote Ground Robots. El-Cezerî Journal of Science and Engineering, vol.8, no.3, 2021, ss.1286 - 1308. 10.31202/ecjse.916532
AMA Özdöl B,Köseler E,Alçiçek E,Cesur S,Aydemir P,Bahtiyar S A Survey on Security Attacks with Remote Ground Robots. El-Cezerî Journal of Science and Engineering. 2021; 8(3): 1286 - 1308. 10.31202/ecjse.916532
Vancouver Özdöl B,Köseler E,Alçiçek E,Cesur S,Aydemir P,Bahtiyar S A Survey on Security Attacks with Remote Ground Robots. El-Cezerî Journal of Science and Engineering. 2021; 8(3): 1286 - 1308. 10.31202/ecjse.916532
IEEE Özdöl B,Köseler E,Alçiçek E,Cesur S,Aydemir P,Bahtiyar S "A Survey on Security Attacks with Remote Ground Robots." El-Cezerî Journal of Science and Engineering, 8, ss.1286 - 1308, 2021. 10.31202/ecjse.916532
ISNAD Özdöl, Batuhan vd. "A Survey on Security Attacks with Remote Ground Robots". El-Cezerî Journal of Science and Engineering 8/3 (2021), 1286-1308. https://doi.org/10.31202/ecjse.916532