Yıl: 2022 Cilt: 70 Sayı: 3 Sayfa Aralığı: 221 - 230 Metin Dili: İngilizce DOI: 10.5578/tt.20229701 İndeks Tarihi: 10-10-2022

Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators

Öz:
Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators Introduction: Shock is a generalized form of acute circulatory failure charac- terized by low tissue perfusion. If not recognized early, it highly increases patient morbidity and mortality. Central venous-arterial CO2 (Carbon dioxide) to arterial-central venous O2 (Oxygen) content ratio (Pcv-aCO2/Ca-cvO2) has been used for the early prediction of anaerobic metabolism in septic shock patients. However, knowledge about the usability of this ratio in cardiogenic shock is scarce. Materials and Methods: We retrospectively collected the data of patients admitted to our 18-bed intensive care unit (Haga Hospital, Department of Intensive Care, The Hague, The Netherlands) with a diagnosis of septic shock or cardiogenic shock in 2018. All patients who had undergone Swan-Ganz or Pulse index Continuous Cardiac Output device insertion were included in the study. The hemodynamic variables were recorded both at ICU admission and during catheterization. Results: Forty-six (n= 46) patients with a mean age of 62 ± 13 years and 52% female gender were enrolled in the study. The Acute Physiology and Chronic Health Evaluation IV (APACHE IV) score was 96 ± 39. Twenty-four patients had septic shock, and twenty-two were diagnosed with cardiogenic shock. Although Pcv-aCO2 (Central venous-arterial CO2) and ScvO2 (Central venous oxygen) were not found different between the cardiogenic and septic shock groups, the Pcv-aCO2/Ca-cvO2 ratio was significantly lower in patients with cardiogenic shock (p= 0.035). The Pcv-aCO2/Ca-cvO2 ratio had a weak cor- relation with ScvO2 (r= 0.21, p= 0.040). Pcv-aCO2 and ScvO2 showed nega- tive lower moderate correlation (r= -0.40, p= 0.030). Twenty patients [nine (19%) with cardiogenic shock, and eleven (23%) with septic shock] died during their ICU or hospital stay. Although Ca-cvO 2, Pcv-aCO2, and ScvO2 were not associated with mortality, a higher Pcv-aCO2/Ca-cvO2 ratio was associated with increased mortality (p= 0.035). Conclusion: The Pcv-aCO2/Ca-cvO2 ratio is a valuable hypoxia indicator in states of shock. However, cutoff levels should be identi- fied for different shock types.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemo- dynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40(12): 1795-815. https://doi.org/10.1007/s00134-014- 3525-z
  • 2. Vincent JL, De Backer D. Circulatory shock. N Engl J Med 2013; 369(18): 1726-34. https://doi.org/10.1056/ NEJMra1208943
  • 3. Rivers EP, Kruse JA, Jacobsen G, Shah K, Loomba M, Otero R, et al. The influence of early hemodynamic optimization on biomarker patterns of severe sepsis and septic shock. Crit Care Med 2007; 35(9): 2016-24. https://doi. org/10.1097/01.CCM.0000281637.08984.6E
  • 4. Pavez N, Kattan E, Vera M, Ferri G, Valenzuela ED, Alegría L, et al. Hypoxia-related parameters during septic shock resuscitation: Pathophysiological determinants and poten- tial clinical implications. Ann Transl Med 2020; 8(12): 784. https://doi.org/10.21037/atm-20-2048
  • 5. Revelly JP, Tappy L, Martinez A, Bollmann M, Cayeux MC, Berger MM, et al. Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med 2005; 33(10): 2235-40. https://doi.org/10.1097/01. CCM.0000181525.99295.8F
  • 6. van Beest P, Wietasch G, Scheeren T, Spronk P, Kuiper M. Clinical review: Use of venous oxygen saturations as a goal - a yet unfinished puzzle. Crit Care 2011; 15(5): 232. https://doi.org/10.1186/cc10351
  • 7. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide dif- ference/arterial-venous oxygen difference ratio, but not cen- tral venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med 2013; 41(6): 1412-20. https://doi.org/10.1097/CCM.0b013e318275cece
  • 8. Scheeren TWL, Wicke JN, Teboul JL. Understanding the carbon dioxide gaps: Curr Opin Crit Care 2018; 24(3): 181-9. https://doi.org/10.1097/MCC.0000000000000493
  • 9. Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarte- rial PCO2 difference with arteriovenous O2 content differ- ence to detect anaerobic metabolism in patients. Intensive Care Med 2002; 28(3): 272-7. https://doi.org/10.1007/ s00134-002-1215-8
  • 10. Shaban M, Salahuddin N, Kolko MR, Sharshir M, AbuRageila M, AlHussain A. The predictive ability of PV-ACO2 gap and PV-ACO2/CA-VO2 ratio in shock: A prospective, cohort study. Shock 2017; 47(4): 395-401. https://doi.org/10.1097/SHK.0000000000000765
  • 11. Wang M, Liu T, Niu Z, Zuo J, Qi D. Utility of venous-to- arterial carbon dioxide changes to arteriovenous oxygen content ratios in the prognosis of severe sepsis and septic shock: A systematic review and meta-analysis. Hong Kong J Emerg Med 2021; 28(4): 241-53. https://doi. org/10.1177/1024907921994970
  • 12. Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, Barrailler S, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are bet- ter markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care 2016; 6(1): 10. https://doi.org/10.1186/s13613-016-0110-3
  • 13. Jakob SM, Groeneveld ABJ, Teboul JL. Venous-arterial CO2 to arterial-venous O2 difference ratio as a resuscitation target in shock states? Intensive Care Med 2015; 41(5): 936-8. https://doi.org/10.1007/s00134-015-3778-1
  • 14. Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorri F, et al. Central venous-to-arterial carbon diox- ide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care 2015; 19(1): 126. https://doi. org/10.1186/s13054-015-0858-0
  • 15. Dubin A, Pozo MO, Hurtado J. Central venous minus arte- rial carbon dioxide pressure to arterial minus central venous oxygen content ratio as an indicator of tissue oxygenation: A narrative review. Rev Bras Ter Intensiva. 2020; 32(1): 115-22. https://doi.org/10.5935/0103- 507X.20200017
  • 16. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consen- sus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315(8): 801. https://doi.org/10.1001/ jama.2016.0287
  • 17. van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK, Kapur NK, et al. Contemporary management of cardio- genic shock: A scientific statement from the American Heart Association. Circulation 2017; 136(16): e232-e268. https://doi.org/10.1161/CIR.0000000000000525
  • 18. Abou-Arab O, Braik R, Huette P, Bouhemad B, Lorne E, Guinot PG. The ratios of central venous to arterial carbon dioxide content and tension to arteriovenous oxygen con- tent are not associated with overall anaerobic metabolism in postoperative cardiac surgery patients. Bachschmid MM, editor. PLoS One 2018; 13(10): e0205950. https:// doi.org/10.1371/journal.pone.0205950
  • 19. Mukai A, Suehiro K, Kimura A, Funai Y, Matsuura T, Tanaka K, et al. Comparison of the venous-arterial CO2 to arterial- venous O2 content difference ratio with the venous-arteri- al CO2 gradient for the predictability of adverse outcomes after cardiac surgery. J Clin Monit Comput 2020; 34(1): 41-53. https://doi.org/10.1007/s10877-019-00286-z
  • 20. Ospina-Tascón GA, Madriñán HJ. Combination of O2 and CO2-derived variables to detect tissue hypoxia in the critically ill patient. J Thorac Dis 2019; 11(S11): S1544- 50. https://doi.org/10.21037/jtd.2019.03.52
  • 21. Zang H, Shen X, Wang S, He Z, Cheng H. Evaluation and prognostic value of CvaCO2/DavO2 in patients with sep- tic shock receiving fluid resuscitation CvaCO2/CavO2. Exp Ther Med 2019; 18(5): 3631-5. https://doi. org/10.3892/etm.2019.7956
  • 22. Ince C. The microcirculation is the motor of sepsis. Crit Care 2005; 9(Suppl 4): S13. https://doi.org/10.1186/ cc3753
  • 23. Mallat J. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J Crit Care Med 2016; 5(1): 47. https://doi. org/10.5492/wjccm.v5.i1.47
  • 24. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42(36): 3599-726. https://doi. org/10.1093/eurheartj/ehab368
  • 25. Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO 2 dif- ference during regional ischemic or hypoxic hypoxia. J Appl Physiol 2000; 89(4):1317-21. https://doi. org/10.1152/jappl.2000.89.4.1317
  • 26. Gutierrez G. A mathematical model of tissue-blood car - bon dioxide exchange during hypoxia. Am J Respir Crit Care Med 2004; 169(4): 525-33. https://doi.org/10.1164/ rccm.200305-702OC
  • 27. Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial carbon diox- ide partial pressure difference in early resuscitation from septic shock: A prospective observational study. Eur J Anaesthesiol 2014; 31(7): 371-80. https://doi. org/10.1097/EJA.0000000000000064
  • 28. Bouchacourt JP, Hurtado FJ, Kohn E, Illescas L, Dubin A, Riva JA. Role of Pv-aCO2 gradient and Pv-aCO2/Ca-vO2 ratio during cardiac surgery: A retrospective observational study. Braz J Anesthesiol Engl Ed 2021; S0104001421003146. https://doi.org/10.1016/j. bjane.2021.07.025
  • 29. Wittayachamnankul B, Chentanakij B, Sruamsiri K, Chattipakorn N. The role of central venous oxygen satura- tion, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference as a goal and prognosis of sepsis treatment. J Crit Care 2016; 36: 223-9. https:// doi.org/10.1016/j.jcrc.2016.08.002
  • 30. Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, Tafur JD, Gutiérrez A, García AF, et al. Persistently high venous- to-arterial carbon dioxide differences during early resusci- tation are associated with poor outcomes in septic shock. Crit Care 2013; 17(6): R294. https://doi.org/10.1186/ cc13160
  • 31. Guo Z, Yin M, Kong J, Wang B, Dai K, Zuo T, et al. Relationship analysis of central venous-to-arterial carbon dioxide difference and cardiac index for septic shock. Sci Rep 2019; 9(1): 8822. https://doi.org/10.1038/s41598- 019-45252-6
  • 32. Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol 2016; 120(2): 226-35. https://doi.org/10.1152/jappl- physiol.00298.2015
  • 33. Textoris J, Fouché L, Wiramus S, Antonini F, Tho S, Martin C, et al. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortal- ity. Crit Care 2011; 15(4): R176. https://doi.org/10.1186/ cc10325
  • 34. Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI. Multicenter study of central venous oxygen saturation (ScvO2) as a predictor of mortality in patients with sepsis. Ann Emerg Med 2010; 55(1): 40-46.e1. https://doi.org/10.1016/j.annemergmed.2009.08.014
  • 35. He H, Long Y, Liu D, Tang B, Ince C. Relationship of rele- vant factors to P(v-a)CO 2 /C(a-v)O 2 ratio in critically ill patients. J Int Med Res 2020; 48(1): 030006051985463. https://doi.org/10.1177/0300060519854633
  • 36. Dubin A, Pozo MO, Kanoore Edul VS, Risso Vazquez A, Enrico C. Poor agreement in the calculation of venoarte- rial PCO2 to arteriovenous O2 content difference ratio using central and mixed venous blood samples in septic patients. J Crit Care 2018; 48: 445-50. https://doi. org/10.1016/j.jcrc.2018.07.010
APA Guven G, van Steekelenburg A, Akin S (2022). Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. , 221 - 230. 10.5578/tt.20229701
Chicago Guven Goksel,van Steekelenburg Anke,Akin Sakir Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. (2022): 221 - 230. 10.5578/tt.20229701
MLA Guven Goksel,van Steekelenburg Anke,Akin Sakir Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. , 2022, ss.221 - 230. 10.5578/tt.20229701
AMA Guven G,van Steekelenburg A,Akin S Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. . 2022; 221 - 230. 10.5578/tt.20229701
Vancouver Guven G,van Steekelenburg A,Akin S Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. . 2022; 221 - 230. 10.5578/tt.20229701
IEEE Guven G,van Steekelenburg A,Akin S "Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators." , ss.221 - 230, 2022. 10.5578/tt.20229701
ISNAD Guven, Goksel vd. "Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators". (2022), 221-230. https://doi.org/10.5578/tt.20229701
APA Guven G, van Steekelenburg A, Akin S (2022). Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. Tüberküloz ve Toraks, 70(3), 221 - 230. 10.5578/tt.20229701
Chicago Guven Goksel,van Steekelenburg Anke,Akin Sakir Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. Tüberküloz ve Toraks 70, no.3 (2022): 221 - 230. 10.5578/tt.20229701
MLA Guven Goksel,van Steekelenburg Anke,Akin Sakir Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. Tüberküloz ve Toraks, vol.70, no.3, 2022, ss.221 - 230. 10.5578/tt.20229701
AMA Guven G,van Steekelenburg A,Akin S Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. Tüberküloz ve Toraks. 2022; 70(3): 221 - 230. 10.5578/tt.20229701
Vancouver Guven G,van Steekelenburg A,Akin S Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. Tüberküloz ve Toraks. 2022; 70(3): 221 - 230. 10.5578/tt.20229701
IEEE Guven G,van Steekelenburg A,Akin S "Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators." Tüberküloz ve Toraks, 70, ss.221 - 230, 2022. 10.5578/tt.20229701
ISNAD Guven, Goksel vd. "Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators". Tüberküloz ve Toraks 70/3 (2022), 221-230. https://doi.org/10.5578/tt.20229701