Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları

63 47

Proje Grubu: EEEAG Sayfa Sayısı: 152 Proje No: 121E031 Proje Bitiş Tarihi: 15.04.2022 Metin Dili: Türkçe İndeks Tarihi: 12-10-2022

Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları

Öz:
Nokta bulutları, veri kümeleri için en temel çok yönlü temsillerden biridir. Nokta bulutlarının elde edilmesini saglayan kaynaklardan biri, birçok disiplinde de uygulamaları olan lazer menzil tarayıcıları gibi 3B sekil edinme cihazlarıdır. Bu tarayıcılar, yüzey örneklerini temsil eden organize olmayan nokta bulutları biçiminde genel olarak gürültülü ham veriler saglar. Bu çalısma kapsamında gelistirilen yöntem nokta bulutunun örneklendigi alt manifoldun simpleks kompleksi iskeleti ile ifade edilen graf yapıları üzerinde hesaplanan en kısa yollar manifoldun jeodezik egrilerine bir yaklasım sunacaktır. Bu örneklenmenin gürültü içerecegi de göz önünde bulundurulmalıdır. Simpleks kompleksi iskeleti ile olusturulan graf yapıları bu gürültüden etkilense de altmanifoldun jeodeziklerine yapılan yaklasımlar jeodeziklerin dagılımlarından çok etkilenmez. Böylelikle, 3B nokta bulutlarının iskeletlerinde diskret jeodeziklerinin dagılımlarının Wasserstein benzerligi ile tanımlanan bir çekirdek fonksiyonu nokta bulutu benzerligi ölçümü sürecinde etkili bir araç olmustur.
Anahtar Kelime: Nokta Bulutu Isleme Graf Çekirdegi Diskret Jeodezi

Konular: Mühendislik, Elektrik ve Elektronik

-

Öz:
Abstract: Point clouds are one of the most basic versatile representations for datasets. One of the sources for obtaining point clouds is 3D shape acquisition devices such as laser range scanners, which also have applications in many disciplines. These scanners provide generally noisy raw data in the form of disorganized point clouds representing surface samples. The method developed within the scope of this study will provide an approximation to the geodesic curves of the manifold with the shortest paths calculated on the graph structures expressed by the simplicial complex skeleton of the submanifold from which the point cloud is sampled. It should also be taken into account that this sampling will contain noise. Although the graph structures formed by the simplicial complex skeleton are affected by this noise, the approaches to the geodesics of the submanifold are not affected much by the distributions of the geodesics. Thus, a kernel function defined by the Wasserstein similarity of the distributions of discrete geodesics in the skeletons of 3D point clouds has been an effective tool in the point cloud similarity measurement process.
Anahtar Kelime:

Konular: Mühendislik, Elektrik ve Elektronik
Erişim Türü: Erişime Açık
  • Adamson, A. ve Alexa, M. 2003. “Approximating and intersecting surfaces from points”. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing (pp. 230-239).
  • Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D. ve Silva, C. T. 2001. “Point set surfaces”. In Proceedings Visualization, 2001. VIS'01. (pp. 21-29). IEEE.
  • Amenta, N. ve Kil, Y. J. 2004. “Defining point-set surfaces”. ACM Transactions on Graphics (TOG), 23(3), 264-270.
  • Amenta, N., Choi, S. ve Kolluri, R. K. 2001. “The power crust, unions of balls, and the medial axis transform”. Computational Geometry, 19(2-3), 127-153.
  • Atıcı, M. ve Vince, A. 2002. “Geodesics in graphs, an extremal set problem, and perfect hash families”. Graphs and Combinatorics, 18(3), 403-413.
  • Attene, M. ve Patanè, G. 2010. “Hierarchical structure recovery of point sampled surfaces”. In Computer Graphics Forum (Vol. 29, No. 6, pp. 1905-1920). Oxford, UK: Blackwell Publishing Ltd.
  • Aziz, F., Wilson, R. C. ve Hancock, E. R. 2013. “Backtrackless walks on a graph”. IEEE transactions on neural networks and learning systems, 24(6), 977-989.
  • Bach, F. R. 2008. “Graph kernels between point clouds”. In Proceedings of the 25th international conference on Machine learning (pp. 25-32).
  • Bai, L., Rossi, L., Zhang, Z. ve Hancock, E. 2015. “An aligned subtree kernel for weighted graphs”. In International Conference on Machine Learning (pp. 30-39). PMLR.
  • Barra, V. ve Biasotti, S. 2014. “3D shape retrieval and classification using multiple kernel learning on extended Reeb graphs”. The Visual Computer, 30(11), 1247-1259.
  • Bernstein, M., De Silva, V., Langford, J. C. ve Tenenbaum, J. B. 2000. “Graph approximations to geodesics on embedded manifolds” (pp. 961-968). Technical report, Department of Psychology, Stanford University.
  • Boissonnat, J. D., Guibas, L. J. ve Oudot, S. Y. 2009. “Manifold reconstruction in arbitrary dimensions using witness complexes”. Discrete & Computational Geometry, 42(1), 37-70.
  • Borgwardt, K. M. ve Kriegel, H. P. 2005. “Shortest-path kernels on graphs”. In Fifth IEEE international conference on data mining (ICDM'05) (pp. 8-pp). IEEE.
  • Boulch, A., Puy, G. ve Marlet, R. 2020. “FKAConv: Feature-Kernel Alignment for Point Cloud Convolution”. In Proceedings of the Asian Conference on Computer Vision.
  • Boyer, E., Bronstein, A. M., Bronstein, M. M., Bustos, B., Darom, T., Horaud, R., ... ve Zobel, V. 2011. “SHREC 2011: robust feature detection and description benchmark”. In 3DOR2011-Eurographics Workshop on 3D Object Retrieval (pp. 71-78).
  • Bronstein, A. M., Bronstein, M. M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., ... ve Sun, J. 2010. “SHREC'10 track: feature detection and description”. In Proceedings of the 3rd Eurographics conference on 3D Object Retrieval (pp. 79-86).
  • Burnham, K. P. ve Anderson, D. R. 2001. “Kullback-Leibler information as a basis for strong inference in ecological studies”. Wildlife research, 28(2), 111-119.
  • Chen, L. M. (2014). “Digital and Discrete Geometry: Theory and Algorithms”. Springer. Chen, X. 2020. “Hierarchical Rigid Registration of Femur Surface Model Based on Anatomical Features”. Molecular & Cellular Biomechanics, 17(3), 139.
  • Connor, M. ve Kumar, P. 2010. “Fast construction of k-nearest neighbor graphs for point clouds”. IEEE transactions on visualization and computer graphics, 16(4), 599- 608.
  • De Floriani, L. ve Hui, A. 2005. “Data Structures for Simplicial Complexes: An Analysis And A Comparison”. In Symposium on Geometry Processing (pp. 119-128).
  • Dey, T. K. 2006. “Curve and surface reconstruction: algorithms with mathematical analysis” (Vol. 23). Cambridge University Press.
  • Dey, T. K. ve Goswami, S. 2006. “Provable surface reconstruction from noisy samples”. Computational Geometry, 35(1-2), 124-141.
  • Edelsbrunner, H. ve Harer, J. 2008. “Persistent homology-a survey”. Contemporary mathematics, 453, 257-282.
  • Filippone, M., Camastra, F., Masulli, F. ve Rovetta, S. 2008. “A survey of kernel and spectral methods for clustering”. Pattern recognition, 41(1), 176-190.
  • Fröhlich, H., Wegner, J. K., Sieker, F. ve Zell, A. 2005. “Optimal assignment kernels for attributed molecular graphs”. In Proceedings of the 22nd international conference on Machine learning (pp. 225-232).
  • Gaidon, A., Harchaoui, Z. ve Schmid, C. 2011. “A time series kernel for action recognition”. In BMVC 2011-British Machine Vision Conference (pp. 63-1). BMVA Press.
  • Gou, J., Yi, Z., Zhang, D., Zhan, Y., Shen, X. ve Du, L. 2018. “Sparsity and geometry preserving graph embedding for dimensionality reduction”. IEEE Access, 6, 75748- 75766.
  • Guo, H., Zhang, F., Chen, J., Xu, Y. ve Xiang, J. 2017. Machine learning classification combining multiple features of a hyper-network of fMRI data in Alzheimer's disease. Frontiers in neuroscience, 11, 615.
  • Harchaoui, Z. ve Bach, F. 2007. “Image classification with segmentation graph kernels”. In 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). IEEE.
  • Johansson, F., Jethava, V., Dubhashi, D. ve Bhattacharyya, C. 2014. “Global graph kernels using geometric embeddings”. In International Conference on Machine Learning (pp. 694-702). PMLR.
  • Kahle, M. 2014. “Topology of random simplicial complexes: a survey”. AMS Contemp. Math, 620, 201-222.
  • Klein, J. ve Zachmann, G. 2004. “Point cloud surfaces using geometric proximity graphs”. Computers & Graphics, 28(6), 839-850.
  • Kriege, N. M., Johansson, F. D. ve Morris, C. 2020. “A survey on graph kernels”. Applied Network Science, 5(1), 1-42.
  • Levin, D. 2004. “Mesh-independent surface interpolation”. In Geometric modeling for scientific visualization (pp. 37-49). Springer, Berlin, Heidelberg.
  • Meltzer, P., Mallea, M. D. G. ve Bentley, P. J. 2020. “PiNet: Attention Pooling for Graph Classification”. arXiv preprint arXiv:2008.04575.
  • Mitchell, J. S., Mount, D. M. ve Papadimitriou, C. H. 1987. “The discrete geodesic problem”. SIAM Journal on Computing, 16(4), 647-668.
  • Munkres, J. R. 2018. “Elements of algebraic topology”. CRC Press.
  • Nakarmi, U., Wang, Y., Lyu, J., Liang, D. ve Ying, L. 2017. “A kernel-based low-rank (KLR) model for low-dimensional manifold recovery in highly accelerated dynamic MRI”. IEEE transactions on medical imaging, 36(11), 2297-2307.
  • Natali, M., Biasotti, S., Patane, G. ve Falcidieno, B. 2011. “Graph-based representations of point clouds”. Graphical Models, 73(5), 151-164.
  • Pérez-Cruz, F. 2008. “Kullback-Leibler divergence estimation of continuous distributions”. In 2008 IEEE international symposium on information theory (pp. 1666- 1670). IEEE.
  • Polthier, K. ve Schmies, M. 2006. “Straightest geodesics on polyhedral surfaces”. In ACM SIGGRAPH 2006 Courses (pp. 30-38).
  • Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K. ve Borgwardt, K. M. 2011. “Weisfeiler-Lehman graph kernels”. Journal of Machine Learning Research, 12(9).
  • Shewchuk, J. R. 1999. “Lecture notes on Delaunay mesh generation”, Cambridge University Press.
  • Song, M. 2020. “A personalized active method for 3D shape classification”. The Visual Computer, 1-18.
  • Wang, F., Lv, J., Ying, G., Chen, S. ve Zhang, C. 2019. “Facial expression recognition from image based on hybrid features understanding”. Journal of Visual Communication and Image Representation, 59, 84-88.
  • Wang, L. ve Sahbi, H. 2013. “Directed acyclic graph kernels for action recognition”. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3168- 3175).
  • Wang, T., Liu, H., Li, Y., Jin, Y., Hou, X. ve Ling, H. 2020. “Learning combinatorial solver for graph matching”. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7568-7577).
  • Wu, J., Pan, S., Zhu, X., Zhang, C ve Philip, S. Y. 2017. “Multiple structure-view learning for graph classification”. IEEE transactions on neural networks and learning systems, 29(7), 3236-3251.
  • Yu, S. ve Mehta, P. G. 2010. “The Kullback–Leibler rate pseudo-metric for comparing dynamical systems”. IEEE Transactions on Automatic Control, 55(7), 1585-1598.
  • Zhang, S., Cui, S. ve Ding, Z. 2020. “Hypergraph spectral analysis and processing in 3D point cloud”. IEEE Transactions on Image Processing, 30, 1193-1206.
  • Zomorodian, A. 2010. “Fast construction of the Vietoris-Rips complex”. Computers & Graphics, 34(3), 263-271.
APA AKGÜLLER Ö, BALCI M (2022). Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları. , 0 - 152.
Chicago AKGÜLLER Ömer,BALCI Mehmet Ali Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları. (2022): 0 - 152.
MLA AKGÜLLER Ömer,BALCI Mehmet Ali Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları. , 2022, ss.0 - 152.
AMA AKGÜLLER Ö,BALCI M Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları. . 2022; 0 - 152.
Vancouver AKGÜLLER Ö,BALCI M Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları. . 2022; 0 - 152.
IEEE AKGÜLLER Ö,BALCI M "Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları." , ss.0 - 152, 2022.
ISNAD AKGÜLLER, Ömer - BALCI, Mehmet Ali. "Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları". (2022), 0-152.
APA AKGÜLLER Ö, BALCI M (2022). Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları. , 0 - 152.
Chicago AKGÜLLER Ömer,BALCI Mehmet Ali Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları. (2022): 0 - 152.
MLA AKGÜLLER Ömer,BALCI Mehmet Ali Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları. , 2022, ss.0 - 152.
AMA AKGÜLLER Ö,BALCI M Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları. . 2022; 0 - 152.
Vancouver AKGÜLLER Ö,BALCI M Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları. . 2022; 0 - 152.
IEEE AKGÜLLER Ö,BALCI M "Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları." , ss.0 - 152, 2022.
ISNAD AKGÜLLER, Ömer - BALCI, Mehmet Ali. "Jeodezi Dagılımı Temelli Graf Çekirdegi ve 3B Nokta Bulutu Uygulamaları". (2022), 0-152.