15 12

Proje Grubu: EEEAG Sayfa Sayısı: 150 Proje No: 218E034 Proje Bitiş Tarihi: 15.12.2021 Metin Dili: Türkçe İndeks Tarihi: 12-10-2022

Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi

Öz:
Optik Kablosuz Haberlesme ve bunun olası bir uygulaması olan Görünür Isıkla Haberlesme (Visible Light Communications (VLC)), sahip oldugu çok yüksek bant genisligi, bilgi iletim kapasitesi, elektromanyetik girisimlere karsı yüksek bagısıklıgı, uzaysal ortamlarda yüksek oranda güvenli kapsama özelligi ve çalısma frekans spektrumunun belli regülasyonlarla düzenlenmemis olması nedeniyle, genis bir uygulama alanı içinde, çok önemli teknik ve operasyonel üstünlükler saglamakta ve radyo tabanlı kablosuz haberlesme sistemlerine bir seçenek olarak veya onların tamamlayıcı niteliginde karsımıza çıkmaktadır. Son bir kaç yıl içinde, varolan sifreleme tekniklerini güçlendirmek için ve onlara tamamlayıcı bir ek olarak, fiziksel katman güvenligi (physical layer security) diye adlandırılan umut verici yeni bir arastırma ve ilgi alanı ortaya çıkmıstır. Fiziksel katman güvenligi, haberlesme ortamındaki yetkili olmayan kisilerden bilginin saklanması amacıyla, her türlü üst katman sifrelemeden bagımsız olarak, tamamen iletisim kanal ortamının özelliklerini kullanarak, gelistirilen teknik ve yöntemlerdir. Projede, genisbant aglarda VLC fiziksel katman düzeyinde güvenligi saglamak amacıyla, geleneksel yaklasımların ötesinde hızlı ve güvenilir çözümler için, etkin kuramsal çalısmalardan baslayarak laboratuvar düzeyine kadar genis bir spektrumda özgün ve yenilikçi algoritmaların tasarımı önerilmektedir. Bu bakımdan, proje, 1003-BIT-GNBT 2018- 1 Genisbant Haberlesme Agları için Veri Isleme Teknolojileri Çagrı Metnindeki (a) ve (b) amaçları ile büyük bir uyum içinde, arastırma bileseni yüksek, yenilikçi ve özgün bir proje niteligindedir. Projede, geleneksel sistemlere göre getirilen yenilikler ve saglanan üstünlükleri su sekilde sıralanabilir: 1. Projede, fiziksel katman güvenligine sahip VLC sisteminin gerçeklenmesinde, Indis modülasyonu ve bunun bir takım varyasyonları olan uzamsal modülasyon, uzay kaydırmalı anahtarlama ve OFDM-indis modülasyonu gibi yeni modülasyon teknikleri ve çok-girisli-çok çıkıslı LED (light emitting diode) yapıları ile, dikgen olmayan çoklu erisimin birlikte çalısan MIMO-NOMA teknigi önerilmektedir. Elde edilecek yeni ve özgün algoritmalar geleneksel sistemlere göre hesaplama karmasıklıgı düsük, güç randımanı yüksek ve çok kullanıcılı senaryolar için de çalısabilme yetenegine sahip olacaktır. Özellikle, sadece bu modülasyon tekniklerine özgü, yapay karıstırma (artifical jammig) sinyal üretme özelligi, bu tekniklerin fiziksel güvenligin saglanmasında geleneksel yaklasımlara kıyasla en önemli üstünlügünü olusturmaktadır. Ayrıca, gelistirilecek algoritmalara iliskin ?erisilebilecek maksimum gizlilik kapasitesi? ve ?gizlilik oranları?nın analitik yollardan belirlenmesi için izlenecek kuramsal yaklasımlar, sistem mimarilerinin farklı olmasından dolayı, geleneksel sistemlerde izlenen yollardan çok daha farklı olacaktır. 2. LED?lerin ve ısıgın neden oldugu kısıtlar sonucu, radyo frekanslı kabosuz haberlesmedeki geleneksel kanal kestirim tekniklerinin uygulanamaması nedeniyle, Masif MIMO yapıdaki görünür ısık kanalların optimal ve hızlı kestiriminde yeni kanal kestirim algoritmalarının tasarımı önerilmektedir. Ayrıca, kestirim hataları ve kanal bilgilerin vericiye iletilmesindeki gecikmelerin, sistemin bit hata basarımına etkilerininin kuramsal ve bilgisyar benzetimleriyle incelenmesi hedeflenmektedir. 3. Projede son olarak, fizisel katman güvenligine sahip VLC sistemlerin laboratuvar ortamında donanımsal olarak geçeklestirilmesi ve gerçek-zamanda çalısmasının test edilmesi önerilmektedir. Literatürde bir karıstırma sinyali üreterek gizliligi saglayan geleneksel sistemlerle, algoritmanın gerek hesaplama karmasıklıgı ve hızı, gerekse hata basarımı ve erisilebilecek enbüyük gizlilik oranları farklı sinyal-gürültü düzeylerinde karsılastırılarak üstünlügü kanıtlanacaktır.
Anahtar Kelime: Anahtar Kelimeler: VLC PLS OFDM indis modülasyonu MIMO SM çoklu erisim.

Konular: Mühendislik, Elektrik ve Elektronik

-

Öz:
Optical Wireless Communications and one of its potential applications, Visible Light Comunications (VLC), with attractive features such as high bandwidth capacity, robustness to electromagnetic interference, high degree of spatial confinement, inherent security and unregulated spectrum, offer powerful alternatives and/or complementary technologies to the existing radio frequency (RF) based wireless systems for a wide range of applications. During the past few years, physical-layer security in VLC networks has emerged as a promising approach to complement conventional encryption techniques and provide a first line of defense against eavesdropping attacks. To provide security at VLC physical layer level in broadband networks, in this project, design of original and innovative algorithms is proposed starting from effective theoretical studies to laboratory level for fast and reliable solutions beyond traditional approaches. In this respect, the project proposal is planned to contribute fully to the goals of the call 1003-BIT-GNBT-2018-1 Data Processing Technologies for Broadband Communication Networks as well as in the goals and objectives specified in the call text (a) and (b), and has a potential to increase competitiveness of our country at the international level. In the project, the innovations and advantages as compared to the state-of-art systems can be listed as follows: 1. New and novel algorithms for physical layer security in multiuser and broadband VLC systems applying new modulation schemes such as index modulations (IM) and its variations like spatial modulation (SM), space shift keying (SSK), OFDM-index modulation techniques (OFDM-IM), as well as optical multiple-input-multiple output (MIMO) with non-orthogonal multiple excess (NOMA) system are developed. The algorithms to be design will have low complexity, high power efficiency and have the capability to work with multi-user scenarios. In particular, the artificial jamming signal generation property of these modulation techniques is the most important advantage in providing physical security compared to the traditional approaches. Moreover, the theoretical methods, to develop the maximum achievable secrecy capacity and secrecy rate of the physical layer security algorithms will be much different than the approaches adopted by the by traditional systems because of the different system architectures employed. 2. Due to some physical constraints imposed by the LEDs and light, it is not possible to employ conventional channel estimation techniques in RF communications. Hence, design of new optimal and computationally efficient estimation algorithms for massive MIMO structured optical channels will be proposed. In addition, the effects of channel estimation errors and the delays in the transmission of channel state information to the transmitter on the bit error performance will be investigated theoretically and by computer simulations. 3. Finally, the proposed system will be implemented in a laboratory environment and its BER performnce will be tested and compared with the state-of-art systems, employing conventional jamming signals.
Anahtar Kelime:

Konular: Mühendislik, Elektrik ve Elektronik
Erişim Türü: Erişime Açık
  • 1. T. Komine and M. Nakagawa, “Fundamental analysis for visiblelight communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, Feb. 2004.
  • 2. S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, U.K.: Cambridge Univ. Press, 2015.
  • 3. H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightw. Technol., vol. 34, no. 6, pp. 1533–1544, Mar. 15, 2016.
  • 4. IEEE Standard for Local and Metropolitan Area Networks—Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Computer Society, IEEE Standard 802.15.7-2011, 2011.
  • 5. X. Li, F. Jin, R. Zhang, J. Wang, Z. Xu, and L. Hanzo, “Users first: User-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 39–53, Jan. 2016.
  • 6. H. Ma, L. Lampe, and S. Hranilovic, “Coordinated broadcasting for multiuser indoor visible light communication systems,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3313–3324, Sep. 2015.
  • 7. L. Yin, W. O. Popoola, X. Wu, and H. Haas, “Performance evaluation of non-orthogonal multiple access in visible light communication,” IEEE Trans. Commun., vol. 64, no. 12, pp. 5162–5175, Dec. 2016.
  • 8. A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355–1387, 1975.
  • 9. I. Csisz¨ ar and J. K¨ orner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory, vol. IT-24, no. 3, pp. 339–348, May 1978.
  • 10. A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical intensity channels,” IEEE Trans. Inf. Theory, vol. 55, no. 10, pp. 4449–4461, Oct. 2009.
  • 11. J.-B. Wang, Q.-S. Hu, J. Wang, M. Chen, and J.-Y. Wang, “Tight bounds on channel capacity for dimmable visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3771–3779, Dec. 1, 2013.
  • 12. A. Chaaban, J. M. Morvan, and M. S. Alouini, “Free-space optical communications: Capacity bounds, approximations, and a new sphere-packing perspective,” IEEE Trans. Commun., vol. 64, no. 3, pp. 1176–1191, Mar. 2016.
  • 13. S. Dimitrov and H. Haas, “Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,” J. Lightw. Technol., vol. 31, no. 6, pp. 918–929, Mar. 15, 2013.
  • 14. A. Mostafa and L. Lampe, “Physical-layer security for MISO visible light communication channels,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1806–1818, Sep. 2015.
  • 15. A. Mostafa and L. Lampe, “Optimal and robust beamforming for secure transmission in MISO visible-light communication links,” IEEE Trans. Signal Process., vol. 64, no. 24, pp. 6501–6516, Dec. 2016.
  • 16. G. Pan, J. Ye, and Z. Ding, “On secure VLC systems with spatially random terminals,” IEEE Commun. Lett., vol. 21, no. 3, pp. 492–495, Mar. 2016.
  • 17. Zeng L., O’brıen D., Mınh H., Faulkner G., Lee K., Jung D., Oh Y., Won E., High Data Rate Multiple Input Multiple Output (MIMO) Optical Wireless Communications Using White LED Lighting, IEEE J. Sel. Areas Commun., 27, 9, 1654–62, (2009).
  • 18. Dambul K., O’brien D., Faulkner G., Indoor Optical Wireless MIMO System With An ˙Imaging Receiver, IEEE Photonics Tech. Lett., 23, 2, 97–99, (2011).
  • 19. R. Mesleh, R. Mehmood, H. Elgala, H. Haas, “Indoor MIMO Optical Wireless Communication Using Spatial Modulation”, IEEE Int. Conf. Commun.(ICC), Cape Town-South Africa, (2010).
  • 20. K. Park, Y. Ko, M. Alouini, “On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels”, Int.Wireless Commun. and Mobile Computing Conf. (IWCMC), Istanbul-Turkey, (2011), pp. 141–146.
  • 21. R. Mesleh, H. Haas H., S. Sinanovic S., C. Ahn, S. Yun, “Spatial Modulation”, IEEE Tran. on Veh.Tech., 57, 4, pp. 2228–41, (2008).
  • 22. E. Basar, U. Aygolu, E. Panayirci and H.V. Poor, “Space-time block coded spatial modulation”, IEEE Trans. Communications, vol.59, no.3, pp. 823-832, Mar. 2011.
  • 23. E. Basar, U. Aygolu, E. Panayirci and H.V. Poor, “New Trellis Code Design for Spatial Modulation”, IEEE Trans. Wireless Communications, vol. 10, no. 8, Aug. 2011.
  • 24. E. Basar, U. Aygolu, E. Panayirci and H.V. Poor, “Super-orthogonal trellis coded spatial modulation”, IET Communications, vol. 6, no. 17, pp. 2922-2932, Nov. 2012.
  • 25. J. Jeganathan, S. Ghrayeb, L. Zczecınski, A. Ceron, “Space-Shift Keying Modulation For MIMO Channels”, IEEE Trans. Wireless Commun., 8, 7, 3692-3703, (2009).
  • 26. A. Yesilkaya, E. Basar, F. Miramirkhani, E. Panayirci, M. Uysal, H. Haas, “Optical MIMO-OFDM with generalized LED index modulation”, IEEE Trans. Commun., vol.65, no. 8, pp. 3429-3441, May 2017.
  • 27. R. Mesleh, H. Elgala, H. Haas, “Optical Spatial Modulation”, J. Opt. Commun. Netw., 3, 3, 234-44 (2011).
  • 28. A. Yesilkaya, T. Cogalan, E. Panayirci, H. Haas and H. V. Poor, (Best paper award), “Achieving Minimum Error in PAM Based MISO Optical Spatial Modulation Systems”, IEEE Int. Conf. Commun. (ICC2018), Kansas City, USA, 2018.
  • 29. A. Yesilkaya, F. Miramirkhani, E. Basar, E. Panayirci and M. Uysal, “Performance of MIMO enhanced unipolar OFDM with realistic indoor visible light channel models”, IEEE Workshop on Optical Wireless Communication (co-located with IEEE-WCNC’16), Doha, Qatar, April 2016.
  • 30. O. Hassan, E. Panayirci, H. V. Poor, and H. Haas, “Physical-Layer Security for Indoor Visible Light Communications with Space Shift Keying Modulation”, IEEE Globecom 2018, 9-13 Dec. 2018, Abu Dhabi, UAE.
  • 31. F.Wu, L-L. Yang, W.Wang and Z. Kong, “Secret precoding-aided spatial modulation”, IEEE Com. Letters, vol. 19, no. 9, pp. 1544-1547, Sept. 2015.
  • 32. A. Mostafa and L. Lampe, “Physical-layer security for visible light communications,” IEEE ICC 2014, Optical Networks and System Workshop, pp. 3342–3347, Sydney, Australia, 10-14 June 2014.
  • 33. A. Mostafa and L. Lampe, “Securing Visible Light Communications via Friendly Jamming,” IEEE Globecom2014, Optical Wireless Communications Workshop, pp. 524–529, Sydney, Australia, 10-14 June 2014.
  • 34. N. Horiike, E. Okamoto and T. Yamamoto, “A downlink non-orthogonal multiple access scheme having physical layer security”, EURASIP J. Wireless Commun. and Networking, 2018: https://doi.org/10.1186/s13638-018-1156-8, 2018.
  • 35. A. Arafa, E. Panayirci, and H. V. Poor, “ Relay-Aided Secure Broadcasting for VLC”, GlobalSIP 2018, Nov. 26–28, 2018, Anaheim, California, USA
  • 36. F. Miramirkhani, M. Uysal, and E. Panayirci, “Novel channel models for visible light communications”, Invited Paper, SPIE Photonics West, San Francisco, CA, USA, Feb. 2015.
  • 37. A. Yesilkaya, F. Miramirkhani, E. Basar, E. Panayirci, M. Uysal, “Performance of MIMO Enhanced Unipolar OFDM with Realistic Indoor Visible Light Channel Models”, IEEE WCNC2016 Workshop on Optical Wireless Communications, Doha, Qatar, Apr. 3-6, 2016.
  • 38. M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, E. Panayirci, “IEEE 802.15.7r1 Reference channel models for visible light communications”, IEEE Comm. Magazine, vol. PP, no. 99, pp. 1, Jan. 2017.
  • 39. F. Miramirkhani, O. Narmanlioglu, M. Uysal and E. Panayirci, “A Mobile Channel Model for VLC and Application to Adaptive System Design”, IEEE Communications Letters, vol. 21, no. 5, pp. 1089-1038, Jan. 2017.
  • 40. E. Bas¸ar, U¨ . Aygo¨ lu¨ , E. Panayırcı, H. V. Poor, “Performance of Spatial Modulation In The Presence of Channel Estimation Errors”, IEEE Commun. Letters, 16, 2, 176-79, (2012).
  • 41. Jovicic A, Li J and Richardson T. 2013 Visible light communication: Opportunities, challenges and the path to market IEEE Commun. Mag. 51 26–32.
  • 42. Haas H, Yin L, Wang Y and Chen C. 2016 What is LiFi? J. Light. Technol. 34 1533–44.
  • 43. Benzetimler A, Panayirci E and Vincent Poor H. 2019 Relay-Aided Secure Broadcasting for Visible Light Communications IEEE Transactions on Communications vol 67pp 4227–39.
  • 44. B¨uy¨ukc¸orak S, Topal O A, Ferhanog O and Karabulut Kurt G. 2020 Mixture model and its experimental validation for visible light communications Electron. Lett. 56 559–62
  • 45. Huang Z, Gao Z and Sun L. 2017 Anti-Eavesdropping Scheme Based on Quadrature Spatial Modulation IEEE Commun. Lett. 21 532–5
  • 46. Wang F, Li R, Zhang J, Shi S and Liu C 2019 Enhancing the secrecy performance of the spatial modulation aided VLC systems with optical jamming Signal Processing 157 288–302.
  • 47. Yin L and Haas H. 2018 Physical-Layer Security in Multiuser Visible Light Communication Networks IEEE J. Sel. Areas Commun. 36 162–74.
  • 48. Cogalan T, Haas H and Panayirci E 2020. Optical spatial modulation design Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378.
  • 49. Yesilkaya A, Basar E, Miramirkhani F, Panayirci E, Uysal M and Haas H. 2017 Optical MIMOOFDM with Generalized LED Index Modulation IEEE Transactions on Communications vol 65pp 3429–41.
  • 50. Panayirci E, Yesilkaya A, Cogalan T, Poor H V and Haas H. 2020 Physical-Layer Security with Optical Generalized Space Shift Keying IEEE Trans. Commun. 68 3042–56.
  • 51. H. Wu, Q. Wang, J. Xiong, M. Zuniga, SmartVLC, 2020, “Co-Designing Smart Lighting and Communication for Visible Light Networks”, IEEE Trans. Mob. Comput. 19, 1956–1970. https://doi.org/10.1109/TMC.2019.2915220.
  • 52. P. Dhulipalla, M. Kang, T. Kim, N. Tan, S. Govindasamy, M.B. Raunications System, 2019 Int. Conf. Comput. Inf. Telecommun. Syst. 1–6haim, 2019, An Integrated Visible-Light and Radio Frequency Comm.
  • 53. O.R.B. Sayco, A.C. Gordillo, 2029, “Design and Implementation for a USRP - Based Visible Light Communications Transceiver”, Proc. - 2019 UNSA Int. Symp. Commun. UNSA ISCOMM 2019. (2019). https://doi.org/10.1109/UNSAISC.2019.8712826.
  • 54. Chen et al., 2016. Chen, C., Basnayaka, D. A., and Haas, H. (2016). “Downlink performance of optical attocell networks” . J. Lightw. Technol., 34(1):137–156.
  • 55. Al-Kinani, A., Wang, C., Zhou, L., and Zhang, W. (2018).Optical wireless communication channel measurements and models.IEEE Commun.Surv. Tutor., 20(3):1939–1962.
  • 56. Kahn and Barry, 1997. Kahn, J. M. and Barry, J. R. (1997). “Wireless infrared communications”. Proc. IEEE, 85(2):265–298.
  • 57. Burchardt et al., 2014. Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., andHaas, H. (2014). VLC: Beyond point-to-point communication.IEEE Commun.Mag., 52(7):98–105.
  • 58. Shi et al., 2019. Shi, J., He, J., Wu, K., and Ma, J. (2019). “Enhanced performance of asynchronous multi-cell VLC system using OQAM/OFDM-NOMA”. J. Lightw. Technol., 37(20):5212–5220.
  • 59. Yang et al., 2018. Yang, H., Chen, C., and Zhong, W. (2018). “Cognitive multi-cell visible light communication with hybrid underlay/overlay resource allocation”. IEEE Photon. Technol. Lett., 30(12):1135–1138.
  • 60. Tran et al., 2019. Tran, C., Hoang, T., and Nguyen, N. (2019). “Coordinated multichannel transmission scheme for indoor multiple access points VLC networks”. In 19th ISCIT, pages 611–615.
  • 61. Panayirci et al., 2020b. Panayirci, E., Yesilkaya, A., Cogalan, T., Poor, H. V., and Haas, H. (2020b). “Physical-layer security with optical generalized space shift keying.” IEEE Trans. Commun., 68(5):3042–3056. 92
  • 62. Yesilkaya et al., 2018. Yesilkaya, A., Cogalan, T., Panayirci, E., Haas, H., and Poor H. V. (2018). “Achieving minimum error in MISO optical spatial modulation”. In Proc.,IEEE ICC, pages 1–6.
  • 63. Purwita et al., 2019. Purwita, A. A., Yesilkaya, A., Tavakkolnia, I., Safari, M., and Haas, H. (2019). “Effects of irregular photodiode configurations for indoor MIMO VLC with mobile users”. In Proc. IEEE PIMRC, pages 1–7.
  • 64. Khalid et al., 2012. Khalid, A. M., Cossu, G., Corsini, R., Choudhury, P., and Ciaramella, E. (2012). “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation”. IEEE Photon. J., 4(5):1465–1473.
  • 65. Tsiatmas et al., 2014. Tsiatmas, A., Baggen, C. P. M. J., Willems, F. M. J., Linnartz, J. M. G., and Bergmans, J. W. M. (2014). “An illumination perspective on visible light communications”, IEEE Commun. Mag., 52(7):64–71.
  • 66. Leung-Yan-Cheong and Hellman, 1978. Leung-Yan-Cheong, S. and Hellman, M. (1978). “The Gaussian wire-tap channel.” IEEE Trans. Inf. Theory, 24(4):451–456.
  • 67. Cover and Thomas, 2006. Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing. Wiley Interscience, USA.
  • 68. Cheng, 1994. Cheng, R. S. (1994). “Multirate achievability in memoryless multiaccess Channel”. In Proc. IEEE ISIT, pages 58–60.
  • 69. Haas et al., 2016. Haas, H., Yin, L., Wang, Y., and Chen, C. (2016).“ What is LiFi¿‘ J. Lightw. Technol., 34(6):1533–1544.
  • 70. Bloch and Barros, 2011. Bloch, M. and Barros, J. (2011).Secrecy capacity, page49–111. Cambridge University Press.Burchardt et al., 2014.
  • 71. Gallager, 1968. Gallager, R. (1968). Information Theory and Reliable Communication. Wiley- New York, NY.
  • 72. Zhang et al., 2015. Zhang, R., Yang, L.-L., and Hanzo, L. (2015). “Error probability and capacity analysis of generalised pre-coding aided spatial modulation” . IEEE Trans. Wireless Commun., 14(1):364–375.
  • 73. A. M. Khalid and G. Cossu and R. Corsini and P. Choudhury and E. Ciaramella, 2012 “ 1- Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation”, IEEE Photon. J., vol. 4, no. 5, pp. 1465-1473.
  • 74. A. Al-Kinani and C. Wang and L. Zhou and W. Zhang, 2018, “ Optical Wireless Communication Channel Measurements and Models”, IEEE Commun. Surv. Tutor.,vol. 20, no. 3, pp. 1939-1962.
  • 75. A. Yesilkaya, E. Basar, F. Miramirkhani, E. Panayirci, M. Uysal, H. Haas, 2017, “ Optical MIMOOFDM with generalized LED index modulation”, IEEE Trans. Commun., vol.65, no. 8, pp. 3429- 3444.
  • 76. S. M. Kay, 1993, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall PTR, ISBN 0-13-345711-7.
  • 77. Vishay, 2019, TSUS4300 infrared emitting diode, 950 nm, GaAs, [Online],” https://www.vishay.com/docs/81053/tsus4300.pdf.
  • 78. C. Zhang, J. Yue, L. Shi and S. Wang, 2021, “A novel physical encryption algorithm for LoRa”, IEEE Commun. Lett., vol.25, no.8, pp. 2512 - 2516.
  • 79. K. H. Rosen, 1993, Elementary Number Theory and Its Applications (3rd ed.), Addison-Wesley, ISBN 978-0201-57889-8.
  • 80. R. G. Gallager, 1993, Information Theory and Reliable Communications, John Wiley and Sons, ISBN W-471-29048-3.
  • 81. Su N, Panayirci E, Koca M, Yesilkaya A, Poor H V and Haas H 2021 Physical layer security for multi-user MIMO visible light communication systems with generalized space shift keying IEEE Trans. Commun. 69 2585–98
  • 82. Jovicic A, Li J and Richardson T 2013 Visible light communication: Opportunities, challenges and the path to market IEEE Commun. Mag. 51 26–32.
  • 83. Haas H, Yin L, Wang Y and Chen C 2016 What is LiFi? J. Light. Technol. 34 1533–44
  • 84. Benzetimler A, Panayirci E and Vincent Poor H 2019 Relay-Aided Secure Broadcasting for Visible Light Communications IEEE Transactions on Communications vol 67pp 4227–39.
  • 85. Huang Z, Gao Z and Sun L 2017 Anti-Eavesdropping Scheme Based on Quadrature Spatial Modulation IEEE Commun. Lett. 21 532–5
  • 86. Wang F, Li R, Zhang J, Shi S and Liu C 2019 Enhancing the secrecy performance of the spatial modulation aided VLC systems with optical jamming Signal Processing 157 288–302.
  • 87. Yin L and Haas H 2018 Physical-Layer Security in Multiuser Visible Light Communication Networks IEEE J. Sel. Areas Commun. 36 162–74
  • 88. Cogalan T, Haas H and Panayirci E 2020 Optical spatial modulation design Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378
  • 89. A, Basar E, Miramirkhani F, Panayirci E, Uysal M and Haas H 2017 Optical MIMO-OFDM with Generalized LED Index Modulation IEEE Transactions on Communications vol 65pp 3429–41
  • 90. Panayirci E, Yesilkaya A, Cogalan T, Poor H V and Haas H 2020 Physical-Layer Security with Optical Generalized Space Shift Keying IEEE Trans. Commun. 68 3042–56.
  • 91. Aghdam S R and Duman T M 2016 Physical Layer Security for Space Shift Keying Transmission with Precoding IEEE Wirel. Commun. Lett. 5 180–3.
  • 92. Saud M S, Wirtanen M, Chowdhury H, H¨anninen T, H¨akkinen J and Katz M 2016 FPGA-based test-bed for visible light communication physical layer study European Wireless Conference 2016,
  • 93. Setiawan E, Adiono T, Osahon I N O and Popoola W O 2019 Experimental Demonstration of Visible Light Communication using White LED, Blue Filter and SoC based Test-Bed Proceeding - 2019 International Symposium on Electronics and Smart Devices, ISESD 2019
  • 94. Mirvakili A, Koomson V J, Rahaim M, Elgala H and Little T D C 2015 Wireless access test-bed through visible light and dimming compatible OFDM 2015 IEEE Wireless Communications and Networking Conference, WCNC 2015 pp 2268–72.
  • 95. Li S, Wang Z, Shi L and Zhang X 2019 Experimental indoor tracking testbed based on Visible Light Communication 2019 26th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2019 pp 129–30.
  • 96. Denton S L 2020 Optical Communications Testbed for the Exploitation of Luminiscence Emission of Solar Cells for Optical Frequency Identification (OFID) (Purdue University)
  • 97. Gawlowicz P, Jarchlo E A and Anatolij Zubow 2020 Wov: WiFi-based VLC testbed arXiv:2001.08489v1
  • 98. Kamsula P Design and Implementation of A Bi-Directional Visible Light Communication Testbed (University of Oulu)
  • 99. C¸ irkino˘ glu H O, Ferhano˘ glu O and Karabulut Kurt G 2021 Improved physical layer security of visible light communications with focused light emitters Opt. Commun. 485.
  • 100. Fortes M and Gonz´alez O 2021 Testbed for experimental characterization of indoor visible light communication channels Electron. 10.
  • 101. B¨uy¨ukc¸orak S, Topal O A, Ferhanog O and Karabulut Kurt G 2020 Mixture model and its experimental validation for visible light communications Electron. Lett. 56 559–62.
  • 102. Sun H, Zhang Y, Wang F, Zhang J and Shi S 2021 SVM Aided Signal Detection in Generalized Spatial Modulation VLC System IEEE Access 9 80360–72.
  • 103. Panayirci E 2021 Optical Index-Coded Space Shift Keying (IC/SSK) IEEE Commun. Lett. 25 2654–8
  • 104. Kisacik R, Yalcinkaya A D, Pusane A E, Baykas T and Uysal M 2021 Characterization of LEDs for visible-light communications Opt. Eng. 60.
  • 105. Kisacik R, Yagan M Y, Uysal M, Pusane A E and Yalcinkaya A D 2021 A New LED Response Model and its Application to Pre-Equalization in VLC Systems IEEE Photonics Technol. Lett. 33 955–8.
  • 106. S. Arnon, Visible Light Communication (2015).
  • 107. F. Wang, Z. Wang, C. Qian, L. Dai, and Z. Yang, ”Efficient vertical handover scheme for heterogeneous VLC-RF systems,” J. Opt. Commun. Netw. 7, 1172–1180 (2015).
  • 108. C. E. Shannon, ”Communication Theory of Secrecy Systems,” Bell Syst. Tech. J. 28, 656–715 (1949).
  • 109. L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, ”Improving wireless physical layer security via cooperating relays,” IEEE Trans. Signal Process. 58, 1875–1888 (2010).
  • 110. M. Eghbal and J. Abouei, ”Security enhancement in free-space optics using acousto-optic deflectors,” J. Opt. Commun. Netw. 6, 684–694 (2014).
  • 111. S. Cho, G. Chen, and J. P. Coon, ”Securing Visible Light Communication Systems by Beamforming in the Presence of Randomly Distributed Eavesdroppers,” IEEE Trans. Wirel. Commun. 17, 2918–2931 (2018).
  • 112. A. Mostafa and L. Lampe, ”Physical-Layer Security for MISO Visible Light Communication Channels,” IEEE J. Sel. Areas Commun. 33, 1806–1818 (2015).
  • 113. A. Mostafa and L. Lampe, ”Optimal and Robust Beamforming for Secure Transmission in MISO Visible-Light Communication Links,” in IEEE Transactions on Signal Processing (2016), Vol. 64, pp. 6501–6516.
  • 114. H. O. C¸ irkino˘ glu, O. Ferhano˘ glu, and G. Karabulut Kurt, ”Improved physical layer security of visible light communications with focused light emitters,” Opt. Commun. 485, (2021).
  • 115. O. G¨urc¨uo˘ glu, I. Deniz Derman, M. Altınsoy, R. Khayatzadeh, F. C¸ ivitci, A. C. Erten, and O. Ferhano˘ glu, ”A 3D-printed 3D actuator for miniaturized laser scanning probes,” Sensors Actuators, A Phys. 317, (2021).
  • 116. S. Bargiel, L. Nieradko, M. J´ozwik, C. Gorecki, and J. A. Dziuban, ”New generation of fully integrated optical microscopes on-chip: application to confocal microscope,” in MEMS, MOEMS, and Micromachining II (2006), Vol. 6186, p. 618602.
  • 117. T. Liu, M. Rajadhyaksha, and D. L. Dickensheets, ”MEMS-in-the-lens architecture for a miniature high-NA laser scanning microscope,” Light Sci. Appl. 8, (2019).
APA PANAYIRCI E, HAAS H, KURT G, KOCA M (2021). Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi. , 0 - 150.
Chicago PANAYIRCI Erdal,HAAS HARALD,KURT GÜNEŞ ZEYNEP KARABULUT,KOCA Mutlu Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi. (2021): 0 - 150.
MLA PANAYIRCI Erdal,HAAS HARALD,KURT GÜNEŞ ZEYNEP KARABULUT,KOCA Mutlu Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi. , 2021, ss.0 - 150.
AMA PANAYIRCI E,HAAS H,KURT G,KOCA M Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi. . 2021; 0 - 150.
Vancouver PANAYIRCI E,HAAS H,KURT G,KOCA M Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi. . 2021; 0 - 150.
IEEE PANAYIRCI E,HAAS H,KURT G,KOCA M "Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi." , ss.0 - 150, 2021.
ISNAD PANAYIRCI, Erdal vd. "Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi". (2021), 0-150.
APA PANAYIRCI E, HAAS H, KURT G, KOCA M (2021). Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi. , 0 - 150.
Chicago PANAYIRCI Erdal,HAAS HARALD,KURT GÜNEŞ ZEYNEP KARABULUT,KOCA Mutlu Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi. (2021): 0 - 150.
MLA PANAYIRCI Erdal,HAAS HARALD,KURT GÜNEŞ ZEYNEP KARABULUT,KOCA Mutlu Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi. , 2021, ss.0 - 150.
AMA PANAYIRCI E,HAAS H,KURT G,KOCA M Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi. . 2021; 0 - 150.
Vancouver PANAYIRCI E,HAAS H,KURT G,KOCA M Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi. . 2021; 0 - 150.
IEEE PANAYIRCI E,HAAS H,KURT G,KOCA M "Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi." , ss.0 - 150, 2021.
ISNAD PANAYIRCI, Erdal vd. "Görünür Isıkla Haberlesmede Fiziksel Katman Güvenligi". (2021), 0-150.