Yıl: 2021 Cilt: 31 Sayı: 3 Sayfa Aralığı: 710 - 721 Metin Dili: İngilizce DOI: 10.29133/yyutbd.932155 İndeks Tarihi: 25-10-2022

Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter

Öz:
Developing technology enables more accurate and efficient measurement with the help of low-cost sensors. Therefore, in this study, a gaussmeter that can be used for agricultural purposes was developed using a low-cost microcontroller development card. The developed low-cost gaussmeter includes an inexpensive magnetic field sensor, a microcontroller development card, and LabVIEW software. Magnetic field measurements, based on the optimization of the microcontroller-based gaussmeter, were developed with the HAL503 Hall Effect sensor with the help of LabVIEW software. A high regression was observed between the values obtained from the device and the results found from the calculations made using theoretical magnetic field formulas and the measured values. It was observed that it works with an average accuracy of 99.6% for 3 different thickness magnets. According to the developed measuring device results of 6, 8, and 10 magnets sizes, R2 values were evaluated as 99.8%, 99.7%, and 99.3%, respectively.
Anahtar Kelime: Gaussmeter Magnetic field Hall effect sensor Microcontroller LabVIEW.

LabVIEW Tabanlı Tarımsal Amaçlı bir Gaussmetre için Düşük Maliyetli Hall Etkisi Duyargasının Etkinlik Tespiti

Öz:
Gelişen teknoloji düşük maliyetli duyargalar yardımıyla daha doğru ve verimli ölçüm yapılmasını sağlamaktadır. Bu nedenle bu çalışmada, düşük maliyetli tarımsal amaçlı kullanılabilecek bir gaussmetre geliştirilmiştir. Geliştirilen düşük maliyetli gaussmetre, bir manyetik alan duyargası, bir mikrodenetleyici geliştirme kartı ve LabVIEW yazılımından oluşmaktadır. Manyetik alan ölçümleri LabVIEW yazılımı yardımıyla HAL503 Hall Effect duyargası ile geliştirilen mikrodenetleyici tabanlı gaussmetrenin optimizasyonuna dayalı olarak yapılmıştır. Cihazdan elde edilen değerler ile teorik manyetik alan formülleri kullanılarak yapılan hesaplamalardan bulunan değerler arasında yüksek bir regresyon gözlenmiştir. HAL503 hall etkisi duyargası kullanılarak yapılan bu çalışmada, 3 farklı kalınlıktaki mıknatıs için cihazın ortalama %99.6 hassasiyetle çalıştığı görülmüştür. 6, 8 ve 10 mıknatıs boyutunda, geliştirilen ölçüm cihazı R2 değerleri sırasıyla %99.8, %99.7 ve % 99.3 olarak hesaplanmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmadi, M., Bolandnazar, S., Panahandeh, J., & Masouleh, S. S. S. (2020). The Effects of Magnetic Compounds on Growth and Yield of Cucumber under Greenhouse Conditions. Yuzuncu Yil University Journal of Agricultural Sciences, 30 (Additional issue), 890-897.
  • Amaya, J. M., Carbonell, M. V., Martinez, E., & Raya, A. (1996). Effects of stationary magnetic fields on germination and growth of seeds. Hortic. Abst., 68, 1363.
  • Anonymous, (2018). Capacitor, Web Site: https://en.wikipedia.org/wiki/Capacitor, (accessed April 25, 2021).
  • Anonymous, (2021). The Original K&J Magnet Calculator, Pull Force. Web Site: https://www.kjmagnetics.com/calculator.asp, (accessed April 25, 2021).
  • Badaroglu, M., Decabooter, G., Laulanet, F., & Charlier, O. (2008). Calibration of integrated CMOS hall sensors using coil-on-chip in ATE environment. In Proceedings of the conference on Design, automation and test in Europe, 873-878.
  • Belyavskaya, N. A. (2001). Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields. Advances in Space Research, 28(4), 645-650.
  • Belyavskaya, N. A. (2004). Biological effects due to weak magnetic field on plants. Advances in space Research, 34(7), 1566-1574.
  • Blagojevic, M., De Venuto, D., & Kayal, M. (2004). SOI Hall sensor based solid state meter for power and energy measurements. IEEE-In Sensors Journal, 1040-1043.
  • Can, H., & Topal, U. (2015). Design of ring core fluxgate magnetometer as attitude control sensor for low and high orbit satellites. Journal of Superconductivity and Novel Magnetism, 28(3), 1093- 1096.
  • Coramık, M., & Ege, Y. (2018). Can the Smartphones and Applications be Used in the Measurement of Magnetıc Field Strength? International Necatibey Educational and Social Sciences Research Congress.
  • D’Ausilio, A. (2012). Arduino: A low-cost multipurpose lab equipment. Behavior research methods, 44(2), 305-313.
  • Danilov, V., Bas, T., Eltez, M., & Rizakulyeva, A. (1993). Artificial magnetic field effect on yield and quality of tomatoes. In II Symposium on Protected Cultivation of Solanacea in Mild Winter Climates, 366, 279-286.
  • Duarte Diaz, C. E., Riquenes, J. A., Sotolongo, B., Portuondo, M. A., Quintana, E. O., & Perez, R. (1997). Effects of magnetic treatment of irrigation water on the tomato crop. Hortic. Abst., 69, 494.
  • Esitken, A., & Turan, M. (2004). Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa). Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 54(3), 135-139.
  • Goldberg, C., & Davis, R. E. (1954). New galvanomagnetic effect. Physical Review 94(5), 1121.
  • Hall, E. H. (1879). On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3), 287-292.
  • Haned, N., & Missous, M. (2003). Nano-tesla magnetic field magnetometry using an InGaAs–AlGaAs– GaAs 2DEG Hall sensor. Sensors and Actuators A: Physical, 102(3), 216-222.
  • Khan, A. M., Lande, P. L., Baderao, S. A., & Ali, R. I. (2017). Arduino-UNO based Magnetic Field Strength Measurement. IJIRST –International Journal for Innovative Research in Science & Technology, (4-7), 46–49.
  • Lin, I. J., & Yotvat, J. (1990). Exposure of irrigation and drinking water to a magnetic field with controlled power and direction. Journal of magnetism and magnetic materials, 83(1-3), 525- 526.
  • Logofatu, M., Munteanu, I., Logofatu, B., & Lazarescu, M. F. (1997). Magnetic Field Sensor With Linear Response. Sensor and Actuators A: Physical, 59(1-3), 149-152.
  • Morvic, M., & Betko, J. (2005). Planar Hall effect in Hall sensors made from InP/InGaAs heterostructure. Sensors and Actuators A: Physical, 120(1), 130-133.
  • Muraji, M., Asai, T., & Tatebe, W. (1998). Primary root growth rate of Zea mays seedlings grown in an alternating magnetic field of different frequencies. Bioelectrochemistry and Bioenergetics, 44(2), 271-273.
  • Muraji, M., Nishimura, M., Tatebe, W., & Fujii, T. (1992). Effect of alternating magnetic field on the growth of the primary root of corn. IEEE Transactions on magnetics, 28(4), 1996-2000.
  • Murphy, J. (1999). Gaussmeter applications. In Proceedings: IEEE-Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference, 573-576.
  • Nowicki, M., & Szewczyk, R. (2013). Ferromagnetic objects magnetovision detection system. Materials, 6(12), 5593-5601.
  • Nowicki, M., & Szewczyk, R. (2019). Determination of the Location and Magnetic Moment of Ferromagnetic Objects Based on the Analysis of Magnetovision Measurements. Sensors, 19(2), 337.
  • Oy, S. A., Demirtas, M., & Aydin, O. (2015). The Desıgn and Applıcatıon Of Gaussmeter with Hall Effect Sensor for Magnetıc Fıeld Measurements. Afyon Kocatepe University Journal of Science and Engineering, 15(3), 8-12.
  • Podlesny, J., Pietruszewski, S., & Podlesna, A. (2004). Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions. International Agrophysics, 18(1).
  • Popovic, R. S. (1991). Hall Effect Devices, Adam Hilger. Bristol, Philadelphia and New York.
  • Popovic, R. S., Schott, C., Shibasaki, I., Biard, J. M., & Foster, R.B. (2001). Hall-effect magnetic sensors. Magnetic Sensors and Magnetometers. Norwell, MA: Artech House.
  • Prasad, G., Agnihotri, K., & Tathagat, K. (2014). Arduino Based Gauss Meter. International Journal Of Engineering Research & Management Technology, (1-2), 291-297, 2348-4039.
  • Puaypung, W., & Rakkapao, S. (2018). A low-cost Arduino microcontroller for measuring magnetic fields in a solenoid. In Journal of Physics: Conference Series, 1144-1.
  • Randjelovic, Z., Pauchard, A., Haddab, Y. & Popovic, R. S. (1999). A Non-Plate Hall Sensor. Sensor and Actuators A: Physical, 76, 149-152.
  • Ripka, P., & Janosek, M. (2010). Advances in magnetic field sensors. IEEE-In Sensors Journal, 10(6), 1108-1116.
  • Schott, C., Besse, P. A., & Popovic, R. S. (2000). Planar Hall effect in the vertical Hall sensor. Sensors and Actuators A: Physical, 85(1-3), 111-115.
  • Seely, E. S. (1997). Magnet measuring for the user. In Proceedings: IEEE-Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference, 437-440.
  • Turker, M., Temirci, C., Battal, P., & Erez, M. E. (2007). The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. Phyton Ann. Rei Bot, 46, 271-284.
APA Beyaz A, PARLAK D (2021). Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter. , 710 - 721. 10.29133/yyutbd.932155
Chicago Beyaz Abdullah,PARLAK Doğukan Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter. (2021): 710 - 721. 10.29133/yyutbd.932155
MLA Beyaz Abdullah,PARLAK Doğukan Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter. , 2021, ss.710 - 721. 10.29133/yyutbd.932155
AMA Beyaz A,PARLAK D Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter. . 2021; 710 - 721. 10.29133/yyutbd.932155
Vancouver Beyaz A,PARLAK D Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter. . 2021; 710 - 721. 10.29133/yyutbd.932155
IEEE Beyaz A,PARLAK D "Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter." , ss.710 - 721, 2021. 10.29133/yyutbd.932155
ISNAD Beyaz, Abdullah - PARLAK, Doğukan. "Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter". (2021), 710-721. https://doi.org/10.29133/yyutbd.932155
APA Beyaz A, PARLAK D (2021). Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 31(3), 710 - 721. 10.29133/yyutbd.932155
Chicago Beyaz Abdullah,PARLAK Doğukan Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 31, no.3 (2021): 710 - 721. 10.29133/yyutbd.932155
MLA Beyaz Abdullah,PARLAK Doğukan Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, vol.31, no.3, 2021, ss.710 - 721. 10.29133/yyutbd.932155
AMA Beyaz A,PARLAK D Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2021; 31(3): 710 - 721. 10.29133/yyutbd.932155
Vancouver Beyaz A,PARLAK D Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2021; 31(3): 710 - 721. 10.29133/yyutbd.932155
IEEE Beyaz A,PARLAK D "Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter." Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 31, ss.710 - 721, 2021. 10.29133/yyutbd.932155
ISNAD Beyaz, Abdullah - PARLAK, Doğukan. "Efficacy Detection of Low-Cost Hall Effect Sensor for a LabVIEW-Based Agricultural Gaussmeter". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 31/3 (2021), 710-721. https://doi.org/10.29133/yyutbd.932155