Yıl: 2020 Cilt: 0 Sayı: Ejosat Özel Sayı 2020 (ICCEES) Sayfa Aralığı: 357 - 362 Metin Dili: İngilizce DOI: 10.31590/ejosat.804592 İndeks Tarihi: 31-10-2022

Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment

Öz:
The need for unmanned underwater vehicles is increasing in the world and in our country. The use of unmanned underwater vehicles in ocean exploration, search and rescue, military and industrial applications is expanding day by day. In particular, unmanned underwater vehicles are an attractive option for underwater search, research and survey operations, as they are low cost compared to manned vehicles. In this article, a detailed vehicle design has been created and analyzed using the computer-aided design tool SOLIDWORKS. With these analyses, the effects of the angle of the engines positioned in unmanned underwater vehicles on speed, time, thrust force and precise positioning parameters will be explained by 2 simulation studies. The first of the simulations is the explanation of the data obtained as a result of the 45 degree angles of the thrusters to the body, and in the second simulation, the data obtained as a result of the positioning of the thrusters at 90 degree angles to the body. It has been observed that the angle of the thrusters positioned in line with the models made directly affects the maneuverability and thrust force. It has been observed that a vehicle positioned at an angle of 90 ° should be preferred in applications requiring gain from speed and time, and a vehicle positioned at an angle of 45 ° should be preferred in applications requiring precise positioning. In conclusion, in this study, it is defined how the thrusters positioning should be in order for the underwater vehicle designed to meet the requirements of a user to be the most efficient and suitable vehicle for the desired environment of mobility.
Anahtar Kelime: Analysis Angle of Thrusters Mobility Thrust Force Unmanned Underwater Vehicle

Su Altı Araçlarında İtici Motorların Farklı Açılarda Konumlandırılmasının CAD Ortamında İtki Kuvvetine Etkisinin Analiz Uygulamaları

Öz:
Dünyada ve ülkemizde insansız su altı araçlarına duyulan gereksinim giderek artmaktadır. İnsansız su altı araçlarının okyanus keşfi, arama – kurtarma, askeri ve endüstriyel uygulamalarda kullanım alanı her geçen gün genişlemektedir. Özellikle, insansız su altı araçları, insanlı araçlara kıyasla düşük maliyetli oldukları için su altı arama, araştırma ve anket işlemleri için cazip bir seçenek haline gelmektedir. Bu makalede, bilgisayar destekli tasarım aracı olan SOLIDWORKS programı kullanılarak ayrıntılı bir araç tasarımı oluşturulmuş ve analizlere tabi tutulmuştur. Bu analizler eşliğinde insansız su altı araçlarında konumlandırılan motorların açısının hız, zaman, itki kuvveti ve hassas konumlanma parametrelerine etkileri 2 simülasyon çalışması ile açıklanacaktır. Simülasyonlardan birincisi motorların gövdeye 45 derecelik açılar ile yerleşimi sonucu elde edilen verilerin açıklanması, ikinci simülasyonda ise motorların gövdeye 90 derecelik açılar ile konumlandırılması sonucu oluşan verilerin paylaşılmasıdır. Yapılan modellemeler doğrultusunda konumlandırılan motorların açısı manevra kabiliyetine ve itki kuvvetine doğrudan etki ettiği gözlemlenmiştir. Motorları 90° açı ile konumlandırılmış araç hız ve zamandan kazanım gerektiren uygulamalarda, 45° açı ile konumlandırılmış araç ise hassas konumlandırma gereken uygulamalarda tercih edilmesi gerektiği görülmüştür. Bu çalışmada, bir kullanıcının gereksinimlerini karşılamak için tasarlanan su altı aracının, hareket kabiliyetinin en verimli ve istenilen ortama uygun bir araç olması için motor konumlandırmalarının ne şekilde olması gerektiği tanımlanmıştır.
Anahtar Kelime: Analiz Hareket Kabiliyeti İnsansız Su Altı Aracı İtki Kuvveti Motor Açısı

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Alam, K., Ray, T., & Anavatti, S. G. (2014). Design and construction of an autonomous underwater vehicle. Neurocomputing, 142, 16-29.
  • Amory, A., & Maehle, E. (2018). Modelling and CFD simulation of a micro autonomous underwater vehicle SEMBIO. Paper presented at the OCEANS 2018 MTS/IEEE Charleston.
  • Aras, M. S. M., Zhe, K. L., Aripin, M. K., Chaing, T. P., Shah, H. N. M., Khamis, A., . . . Rashid, M. Z. A. (2019). Design analysis and modelling of autonomous underwater vehicle (AUV) using CAD.
  • Bovio, E., Cecchi, D., & Baralli, F. (2006). Autonomous underwater vehicles for scientific and naval operations. Annual Reviews in Control, 30(2), 117-130.
  • Cely, J. S., Saltaren, R., Portilla, G., Yakrangi, O., & Rodriguez-Barroso, A. (2019). Experimental and Computational Methodology for the Determination of Hydrodynamic Coefficients Based on Free Decay Test: Application to Conception and Control of Underwater Robots. Sensors, 19(17), 3631.
  • Chin, C., & Lau, M. (2012). Modeling and testing of hydrodynamic damping model for a complex-shaped remotely-operated vehicle for control. Journal of Marine Science and Application, 11(2), 150-163.
  • Choi, H.-T., Hanai, A., Choi, S. K., & Yuh, J. (2003). Development of an underwater robot, ODIN-III. Paper presented at the Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453).
  • Christ, R. D., & Wernli Sr, R. L. (2013). The ROV manual: a user guide for remotely operated vehicles: Butterworth-Heinemann.
  • Cui, R., Ge, S. S., How, B. V. E., & Choo, Y. S. (2010). Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Engineering, 37(17-18), 1491-1502.
  • Eustice, R. M., Pizarro, O., & Singh, H. (2008). Visually augmented navigation for autonomous underwater vehicles. IEEE Journal of oceanic Engineering, 33(2), 103-122.
  • Gonzalez, L. A. (2004). Design, modelling and control of an autonomous underwater vehicle. BE Thesis, The University of Western Australia, Australia.
  • Li, X., Zhao, M., & Ge, T. (2018). A Nonlinear Observer for Remotely Operated Vehicles with Cable Effect in Ocean Currents. Applied Sciences, 8(6), 867.
  • Moore, S., Bohm, H., Jensen, V., & Johnston, N. (2010). Underwater Robotics. Science, Design and Fabrication. Marine Advanced Technology Education Center (MATE), Monterrey CA, USA.
  • Morgansen, K. A., Triplett, B. I., & Klein, D. J. (2007). Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Transactions on Robotics, 23(6), 1184-1199.
  • Omerdic, E., & Roberts, G. (2004). Thruster fault diagnosis and accommodation for open-frame underwater vehicles. Control engineering practice, 12(12), 1575-1598.
  • Singh, H., Roman, C., Pizarro, O., Eustice, R., & Can, A. (2007). Towards high-resolution imaging from underwater vehicles. The International journal of robotics research, 26(1), 55-74.
  • Stutters, L., Liu, H., Tiltman, C., & Brown, D. J. (2008). Navigation technologies for autonomous underwater vehicles. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(4), 581-589.
  • Vukić, Z., & Mišković, N. (2016). State and perspectives of underwater robotics-role of laboratory for underwater systems and technologies. Pomorski zbornik(1), 15-27.
  • Wu, C.-J. (2018). 6-DoF Modelling and Control of a Remotely Operated Vehicle. Flinders University, College of Science and Engineering.,
  • Yi, D., & Al-Qrimli, H. (2017). Identification of hydrodynamics coefficient of underwater vehicle using free decay pendulum method. Journal of Powder Metallurgy & Mining, 6(01).
APA Gülgün T, g, Duran M, Erdoğdu M, i, Durdu A, TERZIOGLU H (2020). Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment. , 357 - 362. 10.31590/ejosat.804592
Chicago Gülgün Talha, göksel,Duran Muhammet Emin,Erdoğdu Mertcan, ismail,Durdu Akif,TERZIOGLU HAKAN Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment. (2020): 357 - 362. 10.31590/ejosat.804592
MLA Gülgün Talha, göksel,Duran Muhammet Emin,Erdoğdu Mertcan, ismail,Durdu Akif,TERZIOGLU HAKAN Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment. , 2020, ss.357 - 362. 10.31590/ejosat.804592
AMA Gülgün T, g,Duran M,Erdoğdu M, i,Durdu A,TERZIOGLU H Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment. . 2020; 357 - 362. 10.31590/ejosat.804592
Vancouver Gülgün T, g,Duran M,Erdoğdu M, i,Durdu A,TERZIOGLU H Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment. . 2020; 357 - 362. 10.31590/ejosat.804592
IEEE Gülgün T, g,Duran M,Erdoğdu M, i,Durdu A,TERZIOGLU H "Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment." , ss.357 - 362, 2020. 10.31590/ejosat.804592
ISNAD Gülgün, Talha vd. "Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment". (2020), 357-362. https://doi.org/10.31590/ejosat.804592
APA Gülgün T, g, Duran M, Erdoğdu M, i, Durdu A, TERZIOGLU H (2020). Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment. Avrupa Bilim ve Teknoloji Dergisi, 0(Ejosat Özel Sayı 2020 (ICCEES)), 357 - 362. 10.31590/ejosat.804592
Chicago Gülgün Talha, göksel,Duran Muhammet Emin,Erdoğdu Mertcan, ismail,Durdu Akif,TERZIOGLU HAKAN Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment. Avrupa Bilim ve Teknoloji Dergisi 0, no.Ejosat Özel Sayı 2020 (ICCEES) (2020): 357 - 362. 10.31590/ejosat.804592
MLA Gülgün Talha, göksel,Duran Muhammet Emin,Erdoğdu Mertcan, ismail,Durdu Akif,TERZIOGLU HAKAN Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment. Avrupa Bilim ve Teknoloji Dergisi, vol.0, no.Ejosat Özel Sayı 2020 (ICCEES), 2020, ss.357 - 362. 10.31590/ejosat.804592
AMA Gülgün T, g,Duran M,Erdoğdu M, i,Durdu A,TERZIOGLU H Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment. Avrupa Bilim ve Teknoloji Dergisi. 2020; 0(Ejosat Özel Sayı 2020 (ICCEES)): 357 - 362. 10.31590/ejosat.804592
Vancouver Gülgün T, g,Duran M,Erdoğdu M, i,Durdu A,TERZIOGLU H Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment. Avrupa Bilim ve Teknoloji Dergisi. 2020; 0(Ejosat Özel Sayı 2020 (ICCEES)): 357 - 362. 10.31590/ejosat.804592
IEEE Gülgün T, g,Duran M,Erdoğdu M, i,Durdu A,TERZIOGLU H "Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment." Avrupa Bilim ve Teknoloji Dergisi, 0, ss.357 - 362, 2020. 10.31590/ejosat.804592
ISNAD Gülgün, Talha vd. "Analysis of The Impact of Different Angles of Thrusters in Underwater Vehicles on Thrust Force in CAD Environment". Avrupa Bilim ve Teknoloji Dergisi Ejosat Özel Sayı 2020 (ICCEES) (2020), 357-362. https://doi.org/10.31590/ejosat.804592