Yıl: 2021 Cilt: 34 Sayı: 4 Sayfa Aralığı: 1163 - 1177 Metin Dili: İngilizce DOI: 10.35378/gujs.769726 İndeks Tarihi: 07-11-2022

A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks

Öz:
Design and investigation of a polarization-insensitive nine-band tunable metamaterial absorber at THz frequencies with equal to or more than 90% absorption ratio in all of the bands are reported. The tunable metamaterial absorber consists of four isosceles triangle patches with four U-shaped cut paths on top of an indium antimonide substrate, which has a fully metallic ground plane at the backside. Numerical analyses show that the metamaterial absorber has wide-angle characteristics under transverse-electric and transverse-magnetic modes. The permittivity of indium antimonide is highly dependent on temperature variations due to its temperature-dependent intrinsic carrier density, leading to shift of nine absorption peak frequencies upon change of environment temperature. Broadband switching of nine absorption peak frequencies with maximum 71.5% shift ratio between 190 K and 230 K is obtained. Temperature sensing performance of the metamaterial absorber is further evaluated and the sensitivities are found to be 11.5 GHz/K, 9.2 GHz/K, 8.3 GHz/K, 7.6 GHz/K, 7.0 GHz/K, 6.2 GHz/K, 5.3 GHz/K, 4.5 GHz/K and 4.2 GHz/K, from the first to ninth absorption band, respectively. Therefore, the proposed nine-band metamaterial absorber sensor has great potential in sensitive and accurate temperature measurement, absorption tuning in optoelectronic applications and as frequency selective thermal emitters.
Anahtar Kelime: Tunable metamaterial Polarization-insensitive Absorption ratio Terahertz frequency Temperature sensing

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Sievenpiper, D., Zhang, L., Jimenez Broas, R.F., Alexopolous, N.G., Yablonovitch, E., “High- impedance electromagnetic surfaces with a forbidden frequency band”, IEEE Transactions on Microwave Theory and Techniques, 47(11): 2059–2074, (1999). DOI: 10.1109/22.798001
  • [2] Simovski, C.R., Maagt, P. de, Melchakova, I.V., “High-impedance surfaces having stable resonance with respect to polarization and incidence angle”, IEEE Transactions on Antennas and Propagation, 53(3): 908–914, (2005). DOI: 10.1109/TAP.2004.842598
  • [3] Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J., “A perfect metamaterial absorber”, Physical Review Letters, 100: 207402, (2008). DOI: 10.1103/PhysRevLett.100.207402
  • [4] Watts, C.M., Liu, X., Padilla, W.J., “Metamaterial electromagnetic wave absorbers”, Advanced Materials, 24: OP98–OP120, (2012). DOI: 10.1002/adma.201200674
  • [5] Chen, H-T., Yang, H., Singh, R., O’Hara, J.F., Azad, A.K., Trugman, S.A., Jia, Q.X., Taylor, A.J., “Tuning the resonance in high-temperature superconducting terahertz metamaterials”, Physical Review Letters, 105(24): 247402, (2010). DOI: 10.1103/PhysRevLett.105.247402
  • [6] Bossard, J.A., Lin, L., Yun, S., Liu, L., Werner, D.H., Mayer, T.S., “Near-ideal optical metamaterial absorbers with super-octave bandwidth”, ACS Nano, 8(2): 1517–1524, (2014). DOI: 10.1021/nn4057148
  • [7] Liu, Z., Li, Y., Zhang, J., Huang, Y., Li, Z., Pei, J., Fang, B., Wang, X., Xiao, H., “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films”, Journal of Physics D: Applied Physics, 50: 385104, (2017). DOI: 10.1088/1361–6463/aa8338
  • [8] Kadlec, C., Skoromets, V., Kadlec, F., Němec, H., Chen, H.-T., Jurka, V., Hruška, K., Kužel, P., “Electric-field tuning of a planar terahertz metamaterial based on strained SrTiO3 layers”, Journal of Physics D: Applied Physics, 51: 054001, (2018). DOI: 10.1088/1361-6463/aaa315
  • [9] Shen, X., Yang, Y., Zang, Y., Gu, J., Han, J., Zhang, W., Cui, T.J., “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation”, Applied Physics Letters, 101: 154102, (2012). DOI: 10.1063/1.4757879
  • [10] Dong, B., Ma, H., Wang, J., Shi, P., Li, J., Zhu, L., Lou, J., Feng, M., Qu, S., “A thermally tunable THz metamaterial frequency-selective surface based on barium strontium titanate thin film”, Journal of Physics D: Applied Physics, 52: 045301, (2019). DOI: 10.1088/1361-6463/aaebef
  • [11] Ding, F., Cui, Y., Ge, X., Jin, Y., He, S., “Ultra-broadband microwave metamaterial absorber”, Applied Physics Letters, 100: 103506, (2012). DOI: 10.1063/1.3692178
  • [12] Zhu, J., Ma, Z., Sun, W., Ding, F., He, Q., Zhou, L., Ma, Y., “Ultra-broadband terahertz metamaterial absorber”, Applied Physics Letters, 105: 021102, (2014). DOI: 10.1063/1.4890521
  • [13] Ye, Q., Liu, Y., Lin, H., Li, M., Yang, H., “Multi-band metamaterial absorber made of multi-gap SRRs structure”, Applied Physics A Materials Science & Processing, 107: 155–160, (2012). DOI: 10.1007/s00339-012-6796-7
  • [14] He, Y., Wu, Q., Yan, S., “Multi-band terahertz absorber at 0.1–1 THz frequency based on ultra- thin metamaterial”, Plasmonics, 14: 1303–1310, (2019). DOI: 10.1007/s11468-019-00936-7
  • [15] Sood, D., Tripathi, C.C., “Quad band electric field-driven LC resonator based polarisation- insensitive metamaterial absorber”, IET Microwaves, Antennas & Propagation, 12(4): 588–594, (2017). DOI: 10.1049/iet-map.2017.0908
  • [16] Huang, X., Lu, C., Rong, C., Hu, Z., Liu, M., “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances”, IEEE Photonics Journal, 10, 6: 4600811, (2018). DOI: 10.1109/JPHOT.2018.2878455
  • [17] Padilla, W.J., Taylor, A. J., Highstrete, C., Lee, M., Averitt, R.D., “Dynamical electric and magnetic metamaterial response at terahertz frequencies”, Physical Review Letters, 96: 107401, (2006). DOI: 10.1103/PhysRevLett.96.107401
  • [18] Chen, H.-T., Padilla, W.J., Zide, J.M.O., Gossard, A.C., Taylor, A.J., Averitt, R.D., “Active terahertz metamaterial devices”, Nature, 444: 597–600, (2006). DOI: 10.1038/nature05343
  • [19] Ricci, M.C., Xu, H., Prozorov, R., Zhuravel, A.P., Ustinov, A.V., Anlage, S.M., “Tunability of superconducting metamaterials”, IEEE Transactions on Applied Superconductivity, 17(2): 918– 921, (2007). DOI: 10.1109/TASC.2007.898535
  • [20] Fedotov, V.A., Tsiatmas, A., Shi, J.H., Buckingham, R., Groot, P. de, Chen, Y., Wang, S., Zheludev, N.I., “Temperature control of Fano resonances and transmission in superconducting metamaterials”, Optics Express, 18(9): 9015–9019, (2010). DOI: 10.1364/OE.18.009015
  • [21] Jin, B.B., Zhang, C., Engelbrecht, S., Pimenov, A., Wu, J., Xu, Q., Cao, C., Chen, J., Xu, W., Kang, L., Wu, P., “Low loss and magnetic field tunable superconducting terahertz metamaterial”, Optics Express, 18(16): 17504–17509, (2010). DOI: 10.1364/OE.18.017504
  • [22] Singh, R., Xiong, J., Azad, A.K., Yang, H., Trugman, S.A., Jia, Q.X., Taylor, A.J., Chen, H.T., “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials”, Nanophotonics, 1: 117–123, (2012). DOI: 10.1515/nanoph-2012-0007
  • [23] Srivastava, Y.K., Manjappa, M., Cong, L., Krishnamoorthy, H.N.S., Savinov, V., Pitchappa, P., Singh, R., “A superconducting dual-channel photonic switch”, Advanced Materials, 30: 1801257, (2018). DOI: 10.1002/adma.201801257
  • [24] Zhao, J., Cheng, Q., Chen, J., Qi, M.Q., Jiang, W.X., Cui, T.J., “A tunable metamaterial absorber using varactor diodes”, New Journal of Physics, 15: 043049, (2013). DOI:10.1088/1367- 2630/15/4/043049
  • [25] Yuan, H., Zhu, B.O., Yeng, F., “A frequency and bandwidth tunable metamaterial absorber in X- band”, Journal of Applied Physics, 117: 173103, (2015). DOI: 10.1063/1.4919753
  • [26] Hu, F., Qian, Y., Li, Z., Niu, J., Nie, K., Xiong, X., Zhang, W., Peng, Z., “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array”, Journal of Optics, 15: 055101, (2013). DOI: 10.1088/2040-8978/15/5/055101
  • [27] Yao, G., Ling, F., Yue, J., Luo, C., Ji, J., Yao, J., “Dual-band tunable perfect metamaterial absorber in the THz range”, Optics Express, 24(2): 1518–1527, (2016). DOI: 10.1364/OE.24.001518
  • [28] Mulla, B., Sabah, C., “Improvement of multiband absorption with different technics (graphene, ITO, and hole) for metamaterial absorber at optical frequencies”, Journal of Nanophotonics, 12(4): 046017, (2018). DOI: 10.1117/1.JNP.12.046017
  • [29] Zhou, Q., Liu, P., Bian, L.-A., Cai, X., Liu, H., “Multi-band terahertz absorber exploiting graphene metamaterial”, Optical Materials Express, 8(9): 2928–2940, (2018). DOI: 10.1364/OME.8.002928
  • [30] Liu, C., Qi, L., Zhang, X., “Broadband graphene-based metamaterial absorbers”, AIP Advances, 8: 015301, (2018). DOI: 10.1063/1.4998321
  • [31] Xu, Z., Wu, D., Liu, Y., Liu, C., Yu, Z., Yu, L., Ye, H., “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons”, Nanoscale Research Letters, 13: 143, (2018). DOI: 10.1186/s11671-018-2552-z
  • [32] Lin , H., Sturmberg, B.C.P., Lin, K.-T., Yang, Y., Zheng, X., Chong, T.K., Sterke, C.M., Jia, B., “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light”, Nature Photonics, 13: 270–276, (2019). DOI: 10.10138/s41566-019-0389-3.
  • [33] Ling, K., Yoo, M., Su, W., Kim, K., Cook, B., Tentzeris, M.M., Lim, S., “Microfluidic tunable inkjet-printed metamaterial absorber on paper”, Optics Express, 23: 110–120, (2015). DOI: 10.1364/OE.23.000110
  • [34] Shrekenhamer, D., Chen, W.C., Padilla, W.J., “Liquid crystal tunable metamaterial absorber”, Physical Review Letters ,110(17): 177403, (2013). DOI: 10.1103/PhysRevLett.110.177403
  • [35] Isic, G., Vasic, B., Zografopoulos, D.C., Beccherelli, R., Gajic, R., “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals”, Physical Review Applied, 3: 064007, (2015). DOI: 10.1103/PhysRevApplied.3.064007
  • [36] Luu, D.H., Dung, N.V., Hai, P., Giang, T.T., Lam, V.D., “Switchable and tunable metamaterial absorber in THz frequencies”, Journal of Science: Advanced Materials and Devices, 1: 65–68, (2016). DOI: 10.1016/j.jsamd.2016.04.002
  • [37] Bian, Y., Wu, C., Li, H., Zhai, J., “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film”, Applied Physics Letters, 104: 042906, (2014). DOI: 10.1063/1.4863669
  • [38] Song, Z.Y., Wang, K., Li, J.W., Liu, Q.H., “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials”, Optics Express, 26(6): 7148–7154, (2018). DOI: 10.1364/OE.26.007148
  • [39] Li, D., Huang, H., Xia, H., Zengb, J., Li, H., Xie, D., “Temperature-dependent tunable terahertz metamaterial absorber for the application of light modulator”, Results in Physics, 11: 659–664, (2018). DOI: 10.1016/j.rinp.2018.10.014
  • [40] Wang, B.-X., Wang, G. Z., “Temperature tunable metamaterial absorber at THz frequencies”, Journal of Materials Science: Materials in Electronics, 28: 8487–8493, (2017). DOI: 10.1007/s10854-017-6570-x
  • [41] Zou, H., Cheng, Y., “Design of a six-band terahertz metamaterial absorber for temperature sensing application”, Optical Materials , 88: 674–679, (2019). DOI: 10.1016/j.optmat.2019.01.002
  • [42] Appasani, B., “An octaband temperature tunable terahertz metamaterial absorber using tapered triangular structures”, Progress in Electromagnetics Research Letters, 95: 9–16, (2021). DOI: 10.2528/PIERL20101501
  • [43] Cunningham, R.W., Gruber, J.B., “Intrinsic concentration and heavy-hole mass in InSb”, Journal of Applied Physics, 41(4): 1804–1809, (1970). DOI: 10.1063/1.1659107
  • [44] Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W., Singh, R., “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces”, Applied Physics Letters, 106: 031107, (2015). DOI: 10.1063/1.4906109
  • [45] Huang, X., He, W., Yang, F., Ran, J., Yang, Q., Xie, S., “Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime”, Optical Materials Express, 9(3): 1377–1385, (2019). DOI: 10.1364/OME.9.001377
  • [46] Li, W., Kuang, D., Fan, F., Chang, S., Lin, L., “Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure”, Applied Optics, 51(29): 7098–7102, (2012). DOI: 10.1364/AO.51.007098
  • [47] Appasani, B., “Temperature tunable seven band terahertz metamaterial absorber using slotted flower–shaped resonator on an InSb substrate”, Plasmonics, (2021). DOI: 10.1007/s11468-020- 01329-x
APA Bagci F (2021). A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. , 1163 - 1177. 10.35378/gujs.769726
Chicago Bagci Fulya A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. (2021): 1163 - 1177. 10.35378/gujs.769726
MLA Bagci Fulya A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. , 2021, ss.1163 - 1177. 10.35378/gujs.769726
AMA Bagci F A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. . 2021; 1163 - 1177. 10.35378/gujs.769726
Vancouver Bagci F A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. . 2021; 1163 - 1177. 10.35378/gujs.769726
IEEE Bagci F "A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks." , ss.1163 - 1177, 2021. 10.35378/gujs.769726
ISNAD Bagci, Fulya. "A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks". (2021), 1163-1177. https://doi.org/10.35378/gujs.769726
APA Bagci F (2021). A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. Gazi University Journal of Science, 34(4), 1163 - 1177. 10.35378/gujs.769726
Chicago Bagci Fulya A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. Gazi University Journal of Science 34, no.4 (2021): 1163 - 1177. 10.35378/gujs.769726
MLA Bagci Fulya A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. Gazi University Journal of Science, vol.34, no.4, 2021, ss.1163 - 1177. 10.35378/gujs.769726
AMA Bagci F A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. Gazi University Journal of Science. 2021; 34(4): 1163 - 1177. 10.35378/gujs.769726
Vancouver Bagci F A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. Gazi University Journal of Science. 2021; 34(4): 1163 - 1177. 10.35378/gujs.769726
IEEE Bagci F "A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks." Gazi University Journal of Science, 34, ss.1163 - 1177, 2021. 10.35378/gujs.769726
ISNAD Bagci, Fulya. "A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks". Gazi University Journal of Science 34/4 (2021), 1163-1177. https://doi.org/10.35378/gujs.769726