Yıl: 2021 Cilt: 36 Sayı: 1 Sayfa Aralığı: 275 - 290 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.553847 İndeks Tarihi: 09-11-2022

Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması

Öz:
Bitkisel yağların üretimi sırasında oluşan yüksek miktarda organik kirlilik içeren endüstriyel atık sular, alıcı ortamlara deşarj edilmeden önce arıtılmalıdır. Yapılan çalışmada koagülasyon-flokülasyon ve elektro- Fenton yöntemleri ve iki yöntemin ardışık işletimi ile ayçiçek yağı endüstrisi atık suyunun arıtımı gerçekleştirilmiştir. Koagülasyon-flokülasyon yöntemiyle arıtımda en uygun koagülant türü ve derişimi, flokülant derişimi ve pH’ın belirlenmesi amacıyla PACl ve Al2(SO4)3.18H2O koagülantları kullanılarak 4, 10, 16 g/L değerlerinde, flokülant olarak anyonik ticari polielektrolit kullanılarak 0,06, 0,18 ve 0,3 g/L değerlerinde ve pH 4, 6, 8 koşullarında çalışmalar gerçekleştirilmiştir. Elde edilen en uygun değerlerde (10 g/L Al2(SO4)3.18H2O, 0,06 g/L flokülant, pH 6) yapılan çalışmada %97 kimyasal oksijen ihtiyacı (KOİ) giderimine ulaşılmıştır. Elektro-Fenton yöntemi ile yapılan arıtım çalışmalarında 1, 2,5, 4 A akım şiddeti, 4,5, 9, 18 g/L FeSO4.7H2O derişimi, 32,71, 81,77, 130,84 mM H2O2 derişimi, 3, 5,5, 8 pH değerleri çalışılmış ve en uygun işletim koşulları 1 A akım şiddeti, 9 g/L FeSO4.7H2O, 130,84 mM H2O2, 6,06 H2O2/Fe2+ mol oranı ve pH 3 olarak belirlenmiştir. Bu koşullarda yapılan çalışmada %99 KOİ giderimi ve 2,37 kWh/m3 enerji tüketimi elde edilmiştir. Belirlenen en uygun işletim koşullarında ardışık koagülasyon-flokülasyon-elektro-Fenton yöntemi ile yapılan arıtımda ise 15 min sonunda %98 KOİ giderimi ve 0,48 kWh/m3 enerji tüketimi değerlerine ulaşılmış olup arıtım sonundaki KOİ değeri (183 mg/L) deşarj sınırlarının altında olduğundan deşarj edilebilir kalitede su eldesi sağlanmıştır.
Anahtar Kelime: Ayçiçek yağı endüstrisi atık suyu koagülasyon-flokülasyon elektro-Fenton grafit elektrot

Treatment of sunflower oil industry wastewater by coagulation-flocculation and electro- Fenton methods

Öz:
High levels of organic pollutant containing industrial wastewaters which are generated during the production of vegetable oils must be treated before discharge to the receiving environments. In this work, treatment of sunflower oil industry wastewater was performed via coagulation-flocculation, electro-Fenton and sequential operation of these two methods. To determine optimum coagulant concentration, flocculant concentration and pH, coagulation-flocculation studies were carried out under 4, 10, 16 g/L PACl and Al2(SO4)3.18H2O coagulant concentrations, 0.06, 0.18, 0.3 g/L anionic commercial polyelectrolyte concentrations and 4, 6, 8 pH values, respectively. Results showed a COD removal of 97% under optimum conditions of 10 g/L Al2(SO4)3.18H2O, 0.06 g/L flocculant concentration and pH 6. Electro-Fenton studies were performed under 1, 2.5, 4 A current intensity, 4.5, 9, 18 g/L FeSO4.7H2O concentration, 32.71, 81.77, 130.84 mM H2O2 concentration, and 3, 5.5, 8 pH conditions. Optimum operating conditions for electro-Fenton method were obtained as 1 A, 9 g/L FeSO4.7H2O, 130.84 mM H2O2, 6.06 H2O2/Fe2+ molar ratio and pH 3. Treatment under optimum conditions revealed 99% COD removal and 2.37 kWh/m3 energy consumption for electro- Fenton method. Sequential coagulation-flocculation-electro-Fenton method under optimum conditions resulted in 98% COD removal and 0.48 kWh/m3 energy consumption at 15 min operation, thus the treated water is dischargeable since COD value (183 mg/L) is below discharge limits.
Anahtar Kelime: Sunflower oil industry wastewater coagulation-flocculation electro-Fenton graphite electrode

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Suzuki Y., Maruyama T., Removal of emulsified oil from water by coagulation and foam separation, Sep. Sci. Technol., 40 (16), 3407–3418, 2005.
  • 2. Kajitvichyanukul P., Hung Y.T., Wang L.K., Membrane Technologies for Oil–Water Separation, Membrane and Desalination Technologies, Cilt 13, Editörler: Wang L.K., Chen J.P., Hung Y.T., Shammas N.K., Humana Press, Totowa, NJ, 639–668, 2011.
  • 3. Bayhan Y.K., Değermenci G.D., Investigation of kinetic and removal of organic matter from cosmetic wastewaters by fenton process, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 181-188, 2017.
  • 4. Tezcan Un U., Koparal A.S., Bakir Ogutveren U., Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes, J. Environ. Manage., 90 (1), 428–433, 2009.
  • 5. Chipasa K.B., Limits of physicochemical treatment of wastewater in the vegetable oil refining ındustry, Polish Journal of Environmental Studies, 10 (3), 141-147, 2001.
  • 6. Azbar N., Yonar T., Comparative evaluation of a laboratory and full-scale treatment alternatives for the vegetable oil refining industry wastewater (VORW), Process Biochem., 39 (7), 869–875, 2004.
  • 7. An C., Huang G., Yao Y., Zhao S., Emerging usage of electrocoagulation technology for oil removal from wastewater: A review, Sci. Total Environ., 579, 537– 556, 2017.
  • 8. Murathan A., Koçyiğit H., Removal of cadmium ions from aqueous solutions in fixed beds by using horse chestnut and oak valonia, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (2), 303-306, 2013.
  • 9. Fox C.H., O’Hara P.D., Bertazzon S., Morgan K., Underwood F.E., Paquet P.C., A preliminary spatial assessment of risk: Marine birds and chronic oil pollution on Canada’s Pacific coast, Sci. Total Environ., 573, 799–809, 2016.
  • 10. Phillips L., Johnson M., Deener K., Bonanni C., EPA’s Exposure Assessment Toolbox (EPA-Expo-Box), Journal of Environmental Informatics, 25 (2), 81-84, 2015.
  • 11. Ergin G., Önel S., Determination and removal of copper ions (Cu2+) in the waste electrolyte in an electrochemical machining application, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (3), 487-494, 2014.
  • 12. Bari S., Lim T.H., Yu C.W., Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine, Renewable Energy, 27 (3), 339–351, 2002.
  • 13. Onat B., Arıoğlu H., Güllüoğlu L., Kurt C., Bakal H., Dünya ve Türkiye’de yağlı tohum ve ham yağ üretimine bir bakış, Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 20, 149–153, 2017.
  • 14. Demirci Y., Pekel L.C., Altınten A., Alpbaz M., Simultaneous control of pH, conductivity and temperature with fuzzy control method in the electrocoagulation reactors, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (4), 987-996, 2016.
  • 15. Açıkgöz Ç., Design of laboratory/pilot-scale membrane bioreactor (mbr) system and manufacture, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 43-50, 2018.
  • 16. Sabah E., Çinar M., Çelik M.S., Decolorization of vegetable oils: Adsorption mechanism of β-carotene on acid-activated sepiolite, Food Chem., 100 (4), 1661– 1668, 2007.
  • 17. Sridhar S., Kale A., Khan A.A., Reverse osmosis of edible vegetable oil industry effluent, J. Membr. Sci., 205 (1), 83–90, 2002.
  • 18. Mohammadi T., Esmaeelifar A., Wastewater treatment of a vegetable oil factory by a hybrid ultrafiltration- activated carbon process, J. Membr. Sci., 254 (1), 129– 137, 2005.
  • 19. Saatci Y., Arslan E.I., Konar V., Removal of total lipids and fatty acids from sunflower oil factory effluent by UASB reactor, Bioresour. Technol., 87 (3), 269–272, 2003.
  • 20. Radoiu M.T., Martin D.I., Calinescu I., Iovu H., Preparation of polyelectrolytes for wastewater treatment, J. Hazard. Mater., 106 (1), 27–37, 2004.
  • 21. Bilen M., Ateş Ç., Bayraktar B., Determination of optimal conditions in boron factory wastewater chemical treatment process via response surface methodolgy, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 267-278, 2018.
  • 22. Louhichi G., Bousselmi L., Ghrabi A., Khouni I., Process optimization via response surface methodology in the physico-chemical treatment of vegetable oil refinery wastewater, Environ. Sci. Pollut. Res., 26 (19), 18993–19011, 2019.
  • 23. Daghrir R., Drogui P., François Blais J., Mercier G., Hybrid process combining electrocoagulation and electro-oxidation processes for the treatment of restaurant wastewaters, J. Environ. Eng., 138 (11), 1146–1156, 2012.
  • 24. Özyonar F., Karagözoğlu B., Removal of turbidity from drinking water by electrocoagulation and chemical coagulation, Journal of the Faculty of Engineering and Architecture of Gazi University, 27 (1), 81-89, 2012.
  • 25. Jamaly S., Giwa A., Hasan S.W., Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities, J. Environ. Sci., 37, 15–30, 2015.
  • 26. Sharma S., Aygun A., Simsek H., Electrochemical treatment of sunflower oil refinery wastewater and optimization of the parameters using response surface methodology, Chemosphere, 249, 126511, 2020.
  • 27. Davarnejad R., Sabzehei M., Parvizi F., Heidari S., Rashidi A., Study on soybean oil plant wastewater treatment using the electro-Fenton technique, Chem. Eng. Technol., 42 (12), 2717–2725, 2019.
  • 28. Phalakornkule C., Mangmeemak J., Intrachod K., Nuntakumjorn B., Pretreatment of palm oil mill effluent by electrocoagulation and coagulation., ScienceAsia, 36 (2), 142–149, 2010.
  • 29. Tezcan Ün Ü., Uǧur S., Koparal A.S., Bakir Öǧütveren Ü., Electrocoagulation of olive mill wastewaters, Sep. Purif. Technol., 52 (1), 136–141, 2006.
  • 30. Sirés I., Brillas E., Oturan M.A., Rodrigo M.A., Panizza M., Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 21 (14), 8336–8367, 2014.
  • 31. Plakas K. V., Sklari S.D., Yiankakis D.A., Sideropoulos G.T., Zaspalis V.T., Karabelas A.J., Removal of organic micropollutants from drinking water by a novel electro- Fenton filter: Pilot-scale studies, Water Res., 91, 183– 194, 2016.
  • 32. Nidheesh P.V, Gandhimathi R., Trends in electro- Fenton process for water and wastewater treatment: An overview, Desalination, 299, 1–15, 2012.
  • 33. Sun M., Chen F., Qu J., Liu H., Liu R., Optimization and control of Electro-Fenton process by pH inflection points: A case of treating acrylic fiber manufacturing wastewater, Chem. Eng. J., 269, 399–407, 2015.
  • 34. Özyurt B., Camcıoğlu Ş., Hapoglu H., A consecutive electrocoagulation and electrooxidation treatment for pulp and paper mill wastewater, Desalin. Water Treat., 93, 214–228, 2017.
  • 35. Lee C.S., Robinson J., Chong M.F., A review on application of flocculants in wastewater treatment, Process Saf. Environ. Prot., 92 (6), 489–508, 2014.
  • 36. Harif T., Khai M., Adin A., Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics, Water Res., 46 (10), 3177–3188, 2012.
  • 37. Camcıoğlu Ş., Özyurt B., Zeybek Z., Hapoğlu H., Experimental application of one step ahead advanced pH control to water-based paint wastewater treatment, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 655-664, 2016.
  • 38. Ahmad A.L., Ismail S., Bhatia S., Optimization of coagulation−flocculation process for palm oil mill effluent using response surface methodology, Environ. Sci. Technol., 39 (8), 2828–2834, 2005.
  • 39. Pignatello J.J., Oliveros E., MacKay A., Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry, Critical Reviews in Environmental Science and Technology, 36 (1), 1–84, 2006.
  • 40. Nidheesh P.V., Gandhimathi R., Removal of Rhodamine B from aqueous solution using graphite- graphite electro-Fenton system, Desalin. Water Treat., 52 (10–12), 1872–1877, 2014.
  • 41. Wang C.T., Hu J.L., Chou W.L., Kuo Y.M., Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode, J. Hazard. Mater., 152 (2), 601–606, 2008.
  • 42. Panizza M., Oturan M.A., Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode, Electrochim. Acta, 56 (20), 7084–7087, 2011.
  • 43. Atmaca E., Treatment of landfill leachate by using electro-Fenton method, J. Hazard. Mater., 163 (1), 109– 114, 2009.
  • 44. Palas B., Ersöz G., Atalay S., Investigation of the kinetics of the micropollutant removal by using environmentally friendly wastewater treatment methods: Fenton like oxidation of Methylene Blue in the presence of LaFeO3 perovskite type of catalysts, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4), 1181-1191, 2017.
  • 45. Brillas E., Sauleda R., Casado J., Degradation of 4- chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes, J. Electrochem. Soc., 145 (3), 759–765, 1998.
  • 46. Moreira F.C., Boaventura R.A.R., Brillas E., Vilar V.J.P., Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Appl. Catal. B, 202, 217–261, 2017.
  • 47. Su Kirliliği Kontrolü Yönetmeliği. https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=722 1&MevzuatTur=7&MevzuatTertip=5. Yayın tarihi Aralık 12, 2004. Erişim tarihi Ağustos 6, 2020.
  • 48. Eaton A.D., Clesceri L.S., Rice E.W. ve Greenberg A.E., Standard Methods for the Examination of Water & Wastewater, 21. Baskı, American Public Health Association, A.B.D., 2005.
  • 49. Gökkuş Ö., Çiner F., Investigation of color and cod removal from wastewater containing Disperse Yellow 119 and Disperse Red 167 using fenton oxidation process, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (1), 49-55, 2010.
  • 50. Dovletoglou O., Philippopoulos C., Grigoropoulou H.,. Coagulation for treatment of paint industry wastewater,. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng., 37 (7), 1361–1377, 2002.
  • 51. Bhatia S., Othman Z., Ahmad A.L., Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant, J. Hazard. Mater., 145 (1–2), 120–126, 2007.
  • 52. Birjandi N., Younesi H., Bahramifar N., Ghafari S., Zinatizadeh A.A., Sethupathi S., Optimization of coagulation-flocculation treatment on paper-recycling wastewater: Application of response surface methodology, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 48 (12), 1573– 1582, 2013.
  • 53. Freitas T.K.F.S., Oliveira V.M., de Souza M.T.F., Geraldino H.C.L., Almeida V.C., Fávaro S.L., Garcia J.C., Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant, Ind. Crops Prod., 76, 538–544, 2015.
  • 54. Irfan M., Butt T., Imtiaz N., Abbas N., Khan R.A., Shafique A., The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate, Arab. J. Chem., 10, S2307–S2318, 2017.
  • 55. Bakaraki Turan, N., Sari Erkan, H., Onkal Engin, G., The investigation of shale gas wastewater treatment by electro-Fenton process: Statistical optimization of operational parameters, Process Safety and Environmental Protection, 109, 203–213, 2017.
  • 56. Jaafarzadeh N., Ghanbari F., Ahmadi M., Omidinasab M., Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: Permanganate, electro-Fenton and Co3O4/UV/peroxymonosulfate, Chem. Eng. J., 308, 142–150, 2017.
  • 57. Babuponnusami A., Muthukumar K., Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro- Fenton processes, Chem. Eng. J., 183, 1–9, 2012.
  • 58. Gümüş D., Akbal F., Comparison of Fenton and electro- Fenton processes for oxidation of phenol, Process Safety and Environmental Protection, 103, 252–258, 2016.
  • 59. Mousavi S. A., Nazari S., Applying response surface methodology to optimize the Fenton oxidation process in the removal of reactive red 2, Polish Journal of Environmental Studies, 26 (2), 765–772, 2017.
  • 60. Can O. T., COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton processes, Desalin. Water Treat., 52 (1– 3), 65–73, 2014.
  • 61. Nidheesh P.V, Gandhimathi R., Effect of solution pH on the performance of three electrolytic advanced oxidation processes for the treatment of textile wastewater and sludge characteristics, RSC Adv., 4 (53), 27946–27954, 2014.
  • 62. Neyens E., Baeyens J., A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (1–3), 33–50, 2003.
  • 63. Wang S., A comparative study of Fenton and Fenton- like reaction kinetics in decolourisation of wastewater,. Dyes Pigm., 76 (3), 714–720, 2008.
  • 64. Thirugnanasambandham K., Kandasamy S., Sivakumar V., Kumar R.K., Mohanavelu R., Modeling of by- product recovery and performance evaluation of Electro-Fenton treatment technique to treat poultry wastewater, J. Taiwan Inst. Chem. Eng., 46, 89–97, 2015.
  • 65. Hermosilla D., Cortijo M., Huang C.P., Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes, Sci. Total Environ., 407 (11), 3473–3481, 2009.
  • 66. Moussavi G., Aghanejad M., The performance of electrochemical peroxidation process for COD reduction and biodegradability improvement of the wastewater from a paper recycling plant, Sep. Purif. Technol., 132, 182–186, 2014.
  • 67. Thirugnanasambandham K., Sivakumar V., Modeling and optimization of advanced oxidation treatment of beer industry wastewater using Electro-Fenton process, Environmental Progress and Sustainable Energy, 34 (4), 1072–1079, 2015.
  • 68. Shen Y., Xu Q., Gao D., Shi H., Degradation of an anthraquinone dye by ozone/Fenton: Response surface approach and degradation pathway, Ozone: Science and Engineering, 39 (4), 219–232, 2017.
  • 69. Davarnejad R., Nikseresht M., Ajideh I., An efficient technique for dairy wastewater treatment, Int. J. Dairy Technol., 71 (2), 532–538, 2018.
  • 70. Yilmaz A. E., Boncukcuoğlu R., Kocakerim M., Karakaş İ. H., Waste utilization: The removal of textile dye (Bomaplex Red CR-L) from aqueous solution on sludge waste from electrocoagulation as adsorbent, Desalination, 277 (1), 156–163, 2011.
  • 71. Kurt U., Apaydin O., Gonullu M.T., Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process, J. Hazard. Mater., 143 (1–2), 33–40, 2007.
  • 72. Ngamlerdpokin K., Kumjadpai S., Chatanon P., Tungmanee U., Chuenchuanchom S., Jaruwat P., Lertsathitphongs P., Hunsom M., Remediation of biodiesel wastewater by chemical- and electro- coagulation: A comparative study, J. Environ. Manage., 92 (10), 2454–2460, 2011.
  • 73. İSKİ Genel Müdürlüğü. İSKİ Atıksuların Kanalizasyona Deşarj Yönetmeliği. https: //www .iski.gov. tr/web/assets /SayfalarDocs /Mevzuat% 20ve%20Y%C3%B6netmelikler/%C4%B0SK%C4%B 0%20ATIKSULARIN%20KANAL%C4%B0ZASYO NA%20DE%C5%9EARJ%20Y%C3%96NETMEL%C 4%B0%C4%9E%C4%B0-14012019.pdf. Yayın tarihi Ocak 24, 2013. Erişim tarihi Temmuz 25, 2020.
  • 74. İZSU. Atık Suların Kanalizasyon Şebekesine Deşarj Yönetmeliği. https://www. izsu.gov.tr/ tr/ atiksularindesarjyonetmeligi/51/119. Yayın tarihi Haziran 2, 2016. Erişim tarihi Temmuz 25, 2020.
APA OZYURT B, CAMCIOGLU S, Karatokus T, Yuksek C, Hapoglu H (2021). Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. , 275 - 290. 10.17341/gazimmfd.553847
Chicago OZYURT BARAN,CAMCIOGLU SULE,Karatokus Toprak,Yuksek Ceren,Hapoglu Hale Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. (2021): 275 - 290. 10.17341/gazimmfd.553847
MLA OZYURT BARAN,CAMCIOGLU SULE,Karatokus Toprak,Yuksek Ceren,Hapoglu Hale Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. , 2021, ss.275 - 290. 10.17341/gazimmfd.553847
AMA OZYURT B,CAMCIOGLU S,Karatokus T,Yuksek C,Hapoglu H Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. . 2021; 275 - 290. 10.17341/gazimmfd.553847
Vancouver OZYURT B,CAMCIOGLU S,Karatokus T,Yuksek C,Hapoglu H Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. . 2021; 275 - 290. 10.17341/gazimmfd.553847
IEEE OZYURT B,CAMCIOGLU S,Karatokus T,Yuksek C,Hapoglu H "Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması." , ss.275 - 290, 2021. 10.17341/gazimmfd.553847
ISNAD OZYURT, BARAN vd. "Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması". (2021), 275-290. https://doi.org/10.17341/gazimmfd.553847
APA OZYURT B, CAMCIOGLU S, Karatokus T, Yuksek C, Hapoglu H (2021). Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 275 - 290. 10.17341/gazimmfd.553847
Chicago OZYURT BARAN,CAMCIOGLU SULE,Karatokus Toprak,Yuksek Ceren,Hapoglu Hale Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, no.1 (2021): 275 - 290. 10.17341/gazimmfd.553847
MLA OZYURT BARAN,CAMCIOGLU SULE,Karatokus Toprak,Yuksek Ceren,Hapoglu Hale Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.36, no.1, 2021, ss.275 - 290. 10.17341/gazimmfd.553847
AMA OZYURT B,CAMCIOGLU S,Karatokus T,Yuksek C,Hapoglu H Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021; 36(1): 275 - 290. 10.17341/gazimmfd.553847
Vancouver OZYURT B,CAMCIOGLU S,Karatokus T,Yuksek C,Hapoglu H Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021; 36(1): 275 - 290. 10.17341/gazimmfd.553847
IEEE OZYURT B,CAMCIOGLU S,Karatokus T,Yuksek C,Hapoglu H "Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36, ss.275 - 290, 2021. 10.17341/gazimmfd.553847
ISNAD OZYURT, BARAN vd. "Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/1 (2021), 275-290. https://doi.org/10.17341/gazimmfd.553847