Yıl: 2022 Cilt: 12 Sayı: 1 Sayfa Aralığı: 101 - 118 Metin Dili: Türkçe DOI: 10.17714/gumusfenbil.979439 İndeks Tarihi: 18-11-2022

Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi

Öz:
Bu çalışmada Van ili ve çevrelerinde yetişen yabani kuşburnu ağacından elde edilen talaşlar aktif karbon üretiminde kullanılmıştır. Aktif karbon üretiminde yabani kuşburnu ağaç talaşına (hammadde) NaOH (sodyum hidroksit) ile 1:1 oranında impregnasyon işlemi uygulanmış ve de azot gazı ortamında 800 °C piroliz edilmiştir. Üretilen aktif karbonun Langmuir yüzey alanı 1564.3621 m2/g olarak bulunmuştur. Elde edilen bu aktif karbonun gıda üretimde de kullanımı olan ve katyonik bir boyarmadde olan kinolin sarısının sıcaklık, konsantrasyon ve doğal pH’sında (pH:6.02) adsorpsiyonu incelenmiştir. Üretilen aktif karbon tarafından maksimum kinolin sarısı adsorpsiyonu belirlenerek, Langmuir, Freundlich, temkin ve D-R adsorpsiyon izoterm modellerine göre uyumu gözlenmiştir. R2=0.996 değerine sahip Langmuir adsorpsiyon izotermiyle uyumlu olduğu görülmüştür. Kinetik model olarak; yalancı birinci derece kinetik modeli, yalancı ikini derece kinetik modeli, elovich ve interpartiküler kinetik modellerinin uyumluluğuna bakılmış ve adsorpsiyonun yalancı ikinci dereceden kinetik modeline uyumlu olduğu belirlenmiştir. Çalışmada konsantrasyon ölçümleri UV spektrofotometre ile yapılmıştır. Adsorpsiyon denge verilerinde adsorplanan en yüksek değer 245.6885 mg/g bulunmuştur. Üretilen aktif karbonun sulu çözeltilerden kinolin boyarmaddesinde gideriminde kullanılabilir niteliktedir.
Anahtar Kelime: Adsorpsiyon Aktif karbon İmpregnasyon Yabani kuşburnu ağacı

Removal of quinoline yellow dyestuff from aqueous solutions using activated carbon obtained by sodium hydroxide ımpregnation of wild rosehip wood sawdust

Öz:
In this study, wild rosehip tree shavings that can be grown in Van and its region were used in the production of activated carbon. In the production of activated carbon, wild rosehip wood sawdust (raw material) was impregnated with NaOH (sodium hydroxide) at a ratio of 1:1 and pyrolyzed at 800 °C in a nitrogen gas environment. The Langmuir surface area of the produced activated carbon was found to be 1564.3621 m2/g. The adsorption of quinoline yellow, a cationic dyestuff, which is also used in food production as an adsorbed substance, at temperature, concentration and natural pH (pH:6.02) was investigated. Maximum quinoline yellow adsorption was determined by the produced activated carbon and its compatibility was observed according to Langmuir, Freundlich, Temkin and D-R adsorption isotherm models. It was found to be compatible with the Langmuir adsorption isotherm with R2=0.996. As a kinetic model, The compatibility of the pseudo-first-order kinetic model, pseudo-second-order kinetic model, elovich and interparticular kinetic models was examined and it was determined that adsorption was compatible with the pseudo-second-order kinetic model. In the study, concentration measurements were made with UV spectrophotometer. The highest adsorbed value in the adsorption equilibrium data was found to be 245.6885 mg/g. It is thought that the produced activated carbon can be used for dye removal from aqueous solutions.
Anahtar Kelime: Adsorption Activated carbon Impregnation Wild rosehip tree

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmet, C. & Sivrikaya, H. (2017). Mantar tahribatına uğramış titrek kavak odununun FT-IR yöntemiyle kimyasal analizi. Bartın Orman Fakültesi Dergisi, 19 (1): 139-147. https://doi.org/10.24011/barofd.299364
  • Al-Oweini, R. & El-Rassy, H. (2009). Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si (OR) 4 and R′′ Si (OR′) 3 precursors, Journal of Molecular Structure, 919 (1-3), 140-145. https://doi.org/10.1016/j.molstruc.2008.08.025
  • Altun, T. & Parlayıcı, Ş. (2018). Sepiolit-kitosan kompositlerinin sentezi ve bu kompozit ile sulu cözeltilerden Cr (VI) adsorpsiyonunun incelenmesi, Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 6(2), 242-254. DOI: 10.15317/Scitech.2018.130
  • Amarasinghe, B.M.W.P.K. & Williams, R.A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chemical Engineering Journal, 132(1-3), 299-309. https://doi.org/10.1016/j.cej.2007.01.016
  • Balakrishnan, K. & Schwank, J. (1992). FTIR study of bimetallic Pt-Sn/Al2O3 Catalysts, Journal of Catalysis, 138 (2), 491-499. https://doi.org/10.1016/0021-9517(92)90301-W
  • Bağ, Ö. & Tekin, K. (2019). Production and characterization of hydrothermal carbon from waste lignocellulosic Biomass, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 1063-1076. https://doi.org/10.17341/gazimmfd.427448
  • Başer, İ. & İnanıcı, M. (1990). Boyarmadde Kimyası. (1. Baskı), İstanbul: Marmara Üniversitesi Yayınları
  • Baytar, O., Ceyhan, A. A. & Şahin, Ö. (2021). Production of activated carbon from elaeagnus angustifolia seeds using H3PO4 activator and methylene blue and malachite green adsorption, International Journal of Phytoremediation, 23(7), 693-703. https://doi.org/10.1080/15226514.2020.1849015
  • Beşergil, B. (2015). Enstrümantal Analiz Temel İlkeler. (1. Baskı).Ankara: Gazi Kitabevi.
  • Cagnon, B., Chedeville, O., Cherrier, J. F., Caqueret, V. & Porte, C. (2011). Evolution of adsorption kinetics and isotherms of gallic acid on an activated carbon oxidized by ozone: comparison to the raw material. Journal of the Taiwan Institute of Chemical Engineers, 42(6), 996- 1003. https://doi.org/10.1016/j.jtice.2011.05.004
  • Chen, Y., Mastalerz, M. & Schimmelmann, A. (2012). Characterization of chemical functional groups in macerals across different coal ranks via micro- FTIR spectroscopy. International Journal of Coal Geology, 104, 22-33. https://doi.org/10.1016/j.coal.2012.09.001
  • Corazzari, I., Nisticò, R., Turci, F., Faga, M. G., Franzoso, F., Tabasso, S. & Magnacca, G. (2015). Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity, Polymer Degradation And Stability, 112,1-9. https://doi.org/10.1016/j.polymdegradstab.2014. 12.006
  • Dubinin, M. M. (1947). The equation of the characteristic curve of activated charcoal. Doklady Akademii Nauk., 55,327-329.
  • El-Khaiary, M. I. (2008). Least-squares regression of adsorption equilibrium data: comparing the options. Journal of Hazardous Materials, 158(1), 73-87. https://doi.org/10.1016/j.jhazmat.2008.01.052
  • El Nemr, A., El Sikaily, A., Khaled, A. & Abdelwahab, O. (2007). Removal of toxic chromium (VI) from aqueous solution by activated carbon using casuarina equisetifolia. Chemistry and Ecology, 23(2), 119-129 https://doi.org/10.1080/02757540701197754
  • Eşme, A. (2013). Sudan moleküllerinin ve metal komplekslerinin deneysel ve teorik olarak yapılarının incelenmesi. Doktora tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli.
  • Eren, Z., Bozkurt, A.E. & Dönmez, Z. (2020). Investigation of the adsorption capacity of hopa thermal power plant fly ash, a fuel-oil sourced fly ash, Journal of Environmental and Natural Studies, 2, Issue 2, Pages, 69-87.
  • Genel, Y., Ceylan, H. & Saltabaș, Ö. (2013). Heavy metal removal from aqueous solution by activated kaolin. Fresenius Environmental Bulletin, 22(10), 2888-2895. ̇ Genel, İ., & Genel, Y. (2021). Yabanı̇ kuşburnu ağacı talaşının çı̇nko klorür ile impregnasyonu sonucu aktı̇f karbon üretı̇mı̇ ve kı̇nolı̇n sarısı adsorpsı̇yonu,10. Uluslararası Bilimsel Araştırmalar Kongresi, 43. Ankara.
  • Güner, U. (2014). Toksikoloji, Trakya Üniversitesi Fen Fakültesi, 2, 186-189.
  • Gümüş, D., & Gümüş, F. (2018). Potasyum permanganat kaplı zeolit ve demir oksit kaplı zeolitle metil oranjın adsorpsiyon çalışmaları. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 21(1), 43-54.
  • Gürten, İ. I. 2008. Çay atığından adsorbent üretimi ve üretilen adsorbentin adsorpsiyon özeliklerinin incelenmesi, Doktora tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Ho, Y. S. & McKay, G. (1999). Pseudo-second order model for sorption processes, Process Biochemistry, 34 (5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  • İşsever, H., İşsever, T. & Öztan, G. (2020). COVID-19 epidemiyolojisi. Sağlık Bilimlerinde İleri Araştırmalar Dergisi, 3(S1), 1-13. https://doi.org/10.26650/JARHS2020-S1-0001
  • Kholodkov, I., Biederman, H., Slavınská, D., Choukourov, A. & Trchova, M. (2003). Plasma polymers prepared by RF sputtering of polyethylene, Vacuum, 70 (4),505-509. https://doi.org/10.1016/S0042-207X(02)00702- 9
  • Kimura, T., Kodama, M. & Nagata, C. (1979). Nitroxide radicals generated from carcinogenic aminoazo dyes during their metabolism in vivo and in enzymatic system in vitro. Biochemical Pharmacology, 28(4), 557-560. https://doi.org/10.1016/0006-2952(79)90254-5
  • Kobayashi, H., Karasawa, H., Miyase, T. & Fukushıma, S. (1984). Studies on the constituents of cistanchis herba. III. isolation and structures of new phenylpropanoid glycosides, Cistanosides a and b. Chemical and Pharmaceutical Bulletin, 32 (8): 3009- 3014. https://doi.org/10.1248/cpb.32.3009
  • Kocaer, F. O. & Alkan, U. (2002). Boyarmadde içeren tekstil atiksularinin aritim alternatifleri. Uludag Üniversitesi Mühendislik Mimarlik Fakültesi Dergisi, 7, 47-55.
  • Küçükgül, E. Y. (2004). Ticari aktif karbon üretimi ve özelliklerinin belirlenmesi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 6 (3), 41-56.
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of The American Chemical Society, 38(11), 2221-2295.
  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe. Kunglıga Svenska Vetenskapsakademıens Handlıngar 24(4),1-9
  • Liu, Q., Wang, S., Zheng, Y., Luo, Z. & Cen, K. (2008). Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. Journal of Analytical And Applied Pyrolysis, 82 (1), 170- 177. https://doi.org/10.1016/j.jaap.2008.03.007
  • Peng, W., Li, H., Liu, Y. & Song, S. (2017). A review on heavy metal ions adsorption from water by graphene oxide and its composites. Journal of Molecular Liquids, 230, 496-504. https://doi.org/10.1016/j.molliq.2017.01.064
  • Petibois, C., Gionnet, K., Gonçalves, M., Perromat, A., Moenner, M. & Déléris, G. (2006). Analytical performances of FT-IR spectrometry and imaging for concentration measurements within biological fluids, cells, and tissues, Analyst, 131(5), 640-647. https://doi.org/10.1039/b518076g
  • Redlich, O. J. D. L. & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of Physical Chemistry, 63(6), 1024-1024.
  • Shen, D. K., Gu, S., Luo, K. H., Wang, S. R. & Fang, M. X. (2010). The pyrolytic degradation of wood- derived lignin from pulping process. Bioresource technology, 101(15), 6136- 6146.https://doi.org/10.1016/j.biortech.2010.02. 078
  • Şenel, Ü., Sur, H.İ. & Demirtaş, M. (2012). Tekstil endüstrisinde kullanılan bazı sentetik direkt boyarmaddelerin mutajenik etkisinin umu-testi ile araştırılması. KSÜ Doğa Bilimleri Dergisi, 15(1),13-19.
  • Yilgor, N., Dogu, D., Moore, R., Terzi, E. & Kartal, S. N. (2013). Evaluation of fungal deterioration in liquidambar orientalis mill heartwood by FT-IR and light microscopy, Bio Resources, 8(2), 2805- 2826.
  • Yuan, Y., Cai, X., Tan, B., Zhou, S. & Xing, B. (2018). Molecular İnsights into reversible redox sites in solid-phase humic substances as examined by electrochemical in situ FTIR and two- dimensional correlation spectroscopy, Chemical Geology, 494, 136-143. https://doi.org/10.1016/j.chemgeo.2018.07.029
APA genel i, GENEL Y (2022). Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi. , 101 - 118. 10.17714/gumusfenbil.979439
Chicago genel ilyas,GENEL Yaşar Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi. (2022): 101 - 118. 10.17714/gumusfenbil.979439
MLA genel ilyas,GENEL Yaşar Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi. , 2022, ss.101 - 118. 10.17714/gumusfenbil.979439
AMA genel i,GENEL Y Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi. . 2022; 101 - 118. 10.17714/gumusfenbil.979439
Vancouver genel i,GENEL Y Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi. . 2022; 101 - 118. 10.17714/gumusfenbil.979439
IEEE genel i,GENEL Y "Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi." , ss.101 - 118, 2022. 10.17714/gumusfenbil.979439
ISNAD genel, ilyas - GENEL, Yaşar. "Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi". (2022), 101-118. https://doi.org/10.17714/gumusfenbil.979439
APA genel i, GENEL Y (2022). Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 101 - 118. 10.17714/gumusfenbil.979439
Chicago genel ilyas,GENEL Yaşar Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi 12, no.1 (2022): 101 - 118. 10.17714/gumusfenbil.979439
MLA genel ilyas,GENEL Yaşar Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol.12, no.1, 2022, ss.101 - 118. 10.17714/gumusfenbil.979439
AMA genel i,GENEL Y Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2022; 12(1): 101 - 118. 10.17714/gumusfenbil.979439
Vancouver genel i,GENEL Y Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2022; 12(1): 101 - 118. 10.17714/gumusfenbil.979439
IEEE genel i,GENEL Y "Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi." Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12, ss.101 - 118, 2022. 10.17714/gumusfenbil.979439
ISNAD genel, ilyas - GENEL, Yaşar. "Yabani kuşburnu ağacı talaşının sodyum hidroksit impregnasyonuyla elde edilen aktif karbon kullanılarak kinolin sarısı boyar maddesinin sulu çözeltilerden giderimi". Gümüşhane Üniversitesi Fen Bilimleri Dergisi 12/1 (2022), 101-118. https://doi.org/10.17714/gumusfenbil.979439