Yıl: 2022 Cilt: 9 Sayı: 4 Sayfa Aralığı: 1023 - 1028 Metin Dili: İngilizce DOI: 10.18596/jotcsa.1103748 İndeks Tarihi: 02-12-2022

Facile Preparation of Carbon Nanopillar Array

Öz:
Carbon-based nanostructures have attracted extensive interest in obtaining advanced sensing electronic devices in environmental and biological monitoring applications as an alternative to conventional materials. Herein, the facile preparation, control of the growth, and artificial intelligence–based morphological information of the carbon nanopillar array in the Anodized Aluminum Oxide (AAO) template were investigated. A facile approach for controlling the growth of the nanostructure was proposed as a two-step anodization technique for AAO and Plasma Enhanced Chemical Vapor Deposition (PECVD) for carbon nanopillar array. It involved the competitive carbon deposition between the carbon nanopillars electrodeposited on the AAO template and at the bottom of the pores of AAO under vacuum conditions. The morphology and structure of the prepared carbon nanopillars were reported in detail. Hexagonally straight AAO nanotubes were approximately 65 nm in diameter and 360 nm in length, with 90 nm interpore distances. The AAO nanotube density is approximately 1.75x1014 cm-2. Carbon nanopillars with a width of ~60 nm were used to create a low-dimensional nanostructure. This controllable preparation leads to the facile and impressive preparation of a free-standing carbon nanopillar array, especially for various chemical sensor applications.
Anahtar Kelime: carbon nanopillar array low-dimensional nanostructure alumina nanotube

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Zheng G, Lu W, Jin S, Lieber CM. Synthesis and Fabrication of High-Performance n-Type Silicon Nanowire Transistors. Adv Mater [Internet]. 2004 Nov 4 [cited 2022 Sep 9];16(21):1890–3. .
  • 2. Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL. Chemical Detection with a Single-Walled Carbon Nanotube Capacitor. Science [Internet]. 2005 Mar 25 [cited 2022 Sep 9];307(5717):1942–5. .
  • 3. Huo B, Hu Y, Gao Z, Li G. Recent advances on functional nucleic acid-based biosensors for detection of food contaminants. Talanta [Internet]. 2021 Jan [cited 2022 Sep 9];222:121565. .
  • 4. Bai W, Kuang T, Chitrakar C, Yang R, Li S, Zhu D, et al. Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics [Internet]. 2018 Dec [cited 2022 Sep 9];122:189–204. .
  • 5. Wei BQ, Vajtai R, Ajayan PM. Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett [Internet]. 2001 Aug 20 [cited 2022 Sep 9];79(8):1172–4. .
  • 6. Liu J, Wang X, Peng Q, Li Y. Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials. Adv Mater [Internet]. 2005 Mar 22 [cited 2022 Sep 9];17(6):764–7. .
  • 7. Zhang D, Liang R, Yang H, Song Y, Yang L, Zhang C, et al. Formation of helical polyphenyl nanostructures on carbon nanotubes. Inorganic Chemistry Communications [Internet]. 2021 Apr [cited 2022 Sep 9];126:108491. .
  • 8. Sai Krishna K, Pavan Kumar BVVS, Eswaramoorthy M. Nanopillar arrays of amorphous carbon nitride. Chemical Physics Letters [Internet]. 2011 Jul [cited 2022 Sep 9];511(1–3):87–90. .
  • 9. Tao B, Yang W, Zhou M, Qiu L, Lu S, Wang X, et al. Designing a carbon nanofiber-encapsulated iron carbide anode and nickel-cobalt sulfide-decorated carbon nanofiber cathode for high-performance supercapacitors. Journal of Colloid and Interface Science [Internet]. 2022 Sep [cited 2022 Sep 9];621:139–48. .
  • 10. Reddy BR, Ashok I, Vinu R. Preparation of carbon nanostructures from medium and high ash Indian coals via microwave-assisted pyrolysis. Advanced Powder Technology [Internet]. 2020 Mar [cited 2022 Sep 9];31(3):1229–40. .
  • 11. Wang D, Zhao B, Jiang Y, Hu P, Gao D, Zhang H. Self-etching preparation of yolk-shell Ag@carbon nanostructures for highly effective reduction of 4-nitrophenol. Catalysis Communications [Internet]. 2017 Dec [cited 2022 Sep 9];102:114–7. .
  • 12. Kumar R, Joanni E, Sahoo S, Shim JJ, Tan WK, Matsuda A, et al. An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From zero to bi-dimensional materials. Carbon [Internet]. 2022 Jun [cited 2022 Sep 9];193:298–338. .
  • 13. Li C, Zhang X, Wang K, Su F, Chen CM, Liu F, et al. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. Journal of Energy Chemistry [Internet]. 2021 Mar [cited 2022 Sep 9];54:352–67. .
  • 14. Wang Q, Tian Z, Li Y, Tian S, Li Y, Ren S, et al. General fabrication of ordered nanocone arrays by one-step selective plasma etching. Nanotechnology [Internet]. 2014 Mar 21 [cited 2022 Sep 9];25(11):115301. .
  • 15. Kunuku S, Sankaran KJ, Tsai CY, Chang WH, Tai NH, Leou KC, et al. Investigations on Diamond Nanostructuring of Different Morphologies by the Reactive-Ion Etching Process and Their Potential Applications. ACS Appl Mater Interfaces [Internet]. 2013 Aug 14 [cited 2022 Sep 9];5(15):7439–49. .
  • 16. Zou YS, Ma KL, Zhang WJ, Ye Q, Yao ZQ, Chong YM, et al. Fabrication of diamond nanocones and nanowhiskers by bias-assisted plasma etching. Diamond and Related Materials [Internet]. 2007 Apr [cited 2022 Sep 9];16(4–7):1208–12. .
  • 17. Ren Y, Xu S, Rider AE, Ostrikov K (Ken). Made-to-order nanocarbons through deterministic plasma nanotechnology. Nanoscale [Internet]. 2011 [cited 2022 Sep 9];3(2):731–40. .
  • 18. Chen TM, Pan FM, Hung JY, Chang L, Wu SC, Chen CF. Amorphous Carbon Coated Silicon Nanotips Fabricated by MPCVD Using Anodic Aluminum Oxide as the Template. J Electrochem Soc [Internet]. 2007 [cited 2022 Sep 9];154(4):D215. .
  • 19. Rahman S, Yang H. Nanopillar Arrays of Glassy Carbon by Anodic Aluminum Oxide Nanoporous Templates. Nano Lett [Internet]. 2003 Apr 1 [cited 2022 Sep 9];3(4):439–42. .
  • 20. Hu Y, Wang X, Zhang M, Wang S, Li S, Chen G. A Hierarchical Anodic Aluminum Oxide Template. Nano Lett [Internet]. 2021 Jan 13 [cited 2022 Sep 9];21(1):250–7. .
  • 21. Nakagawa M, Nakaya A, Hoshikawa Y, Ito S, Hiroshiba N, Kyotani T. Size-Dependent Filling Behavior of UV-Curable Di(meth)acrylate Resins into Carbon-Coated Anodic Aluminum Oxide Pores of around 20 nm. ACS Appl Mater Interfaces [Internet]. 2016 Nov 9 [cited 2022 Sep 9];8(44):30628–34. .
  • 22. Sohn JI, Kim YS, Nam C, Cho BK, Seong TY, Lee S. Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes. Appl Phys Lett [Internet]. 2005 Sep 19 [cited 2022 Sep 9];87(12):123115. .
  • 23. Xing H, Zhiyuan L, Kai W, Yi L. Fabrication of three dimensional interconnected porous carbons from branched anodic aluminum oxide template. Electrochemistry Communications [Internet]. 2011 Oct [cited 2022 Sep 9];13(10):1082–5. .
  • 24. Liu X, Shen B, Yuan P, Patel D, Wu C. Production of carbon nanotubes (CNTs) from thermochemical conversion of waste plastics using Ni/anodic aluminum oxide (AAO) template catalyst. Energy Procedia [Internet]. 2017 Dec [cited 2022 Sep 9];142:525–30. .
  • 25. Zhang PJ, Chen JT, Zhuo RF, Xu L, Lu QH, Ji X, et al. Carbon nanodot arrays grown as replicas of specially widened anodic aluminum oxide pore arrays. Applied Surface Science [Internet]. 2009 Feb [cited 2022 Sep 9];255(8):4456–60. .
  • 26. Bertero E, Manzano CV, Bürki G, Philippe L. Stainless steel-like FeCrNi nanostructures via electrodeposition into AAO templates using a mixed-solvent Cr(III)-based electrolyte. Materials & Design [Internet]. 2020 May [cited 2022 Sep 9];190:108559. .
  • 27. Vu HT, Lim J. Effects of country and individual factors on public acceptance of artificial intelligence and robotics technologies: a multilevel SEM analysis of 28-country survey data. Behaviour & Information Technology [Internet]. 2022 May 19 [cited 2022 Sep 9];41(7):1515–28. .
  • 28. Yeganeh Ghotbi M, Javanmard A, Soleimani H. Layered nanoreactor assisted to produce B-doped and P-doped 3D carbon nanostructures for supercapacitor electrodes. Journal of Energy Storage [Internet]. 2021 Dec [cited 2022 Sep 9];44:103514. .
APA TASALTIN N, KARAKUŞ S, AKKURT B (2022). Facile Preparation of Carbon Nanopillar Array. , 1023 - 1028. 10.18596/jotcsa.1103748
Chicago TASALTIN NEVIN,KARAKUŞ SELCAN,AKKURT Barbaros Facile Preparation of Carbon Nanopillar Array. (2022): 1023 - 1028. 10.18596/jotcsa.1103748
MLA TASALTIN NEVIN,KARAKUŞ SELCAN,AKKURT Barbaros Facile Preparation of Carbon Nanopillar Array. , 2022, ss.1023 - 1028. 10.18596/jotcsa.1103748
AMA TASALTIN N,KARAKUŞ S,AKKURT B Facile Preparation of Carbon Nanopillar Array. . 2022; 1023 - 1028. 10.18596/jotcsa.1103748
Vancouver TASALTIN N,KARAKUŞ S,AKKURT B Facile Preparation of Carbon Nanopillar Array. . 2022; 1023 - 1028. 10.18596/jotcsa.1103748
IEEE TASALTIN N,KARAKUŞ S,AKKURT B "Facile Preparation of Carbon Nanopillar Array." , ss.1023 - 1028, 2022. 10.18596/jotcsa.1103748
ISNAD TASALTIN, NEVIN vd. "Facile Preparation of Carbon Nanopillar Array". (2022), 1023-1028. https://doi.org/10.18596/jotcsa.1103748
APA TASALTIN N, KARAKUŞ S, AKKURT B (2022). Facile Preparation of Carbon Nanopillar Array. Journal of the Turkish Chemical Society, Section A: Chemistry, 9(4), 1023 - 1028. 10.18596/jotcsa.1103748
Chicago TASALTIN NEVIN,KARAKUŞ SELCAN,AKKURT Barbaros Facile Preparation of Carbon Nanopillar Array. Journal of the Turkish Chemical Society, Section A: Chemistry 9, no.4 (2022): 1023 - 1028. 10.18596/jotcsa.1103748
MLA TASALTIN NEVIN,KARAKUŞ SELCAN,AKKURT Barbaros Facile Preparation of Carbon Nanopillar Array. Journal of the Turkish Chemical Society, Section A: Chemistry, vol.9, no.4, 2022, ss.1023 - 1028. 10.18596/jotcsa.1103748
AMA TASALTIN N,KARAKUŞ S,AKKURT B Facile Preparation of Carbon Nanopillar Array. Journal of the Turkish Chemical Society, Section A: Chemistry. 2022; 9(4): 1023 - 1028. 10.18596/jotcsa.1103748
Vancouver TASALTIN N,KARAKUŞ S,AKKURT B Facile Preparation of Carbon Nanopillar Array. Journal of the Turkish Chemical Society, Section A: Chemistry. 2022; 9(4): 1023 - 1028. 10.18596/jotcsa.1103748
IEEE TASALTIN N,KARAKUŞ S,AKKURT B "Facile Preparation of Carbon Nanopillar Array." Journal of the Turkish Chemical Society, Section A: Chemistry, 9, ss.1023 - 1028, 2022. 10.18596/jotcsa.1103748
ISNAD TASALTIN, NEVIN vd. "Facile Preparation of Carbon Nanopillar Array". Journal of the Turkish Chemical Society, Section A: Chemistry 9/4 (2022), 1023-1028. https://doi.org/10.18596/jotcsa.1103748