Yıl: 2022 Cilt: 46 Sayı: 4 Sayfa Aralığı: 941 - 955 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3406 İndeks Tarihi: 05-12-2022

Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts

Öz:
Direct production of light olefins, building blocks of chemical industry, can be attained by developing efficient catalysts for Fischer–Tropsch synthesis (FTS). The nature of FTS complicates the catalyst development process as the product distribution is affected by the components and the preparation methods of the catalyst. In this work, high-throughput (HT) methodology is employed to overcome this problem by testing many different catalyst formulations. Fast performance screening of 40 different $α-Al_2O_3$ supported FeMn based catalysts promoted with Cu, K and Ni, using different impregnation agents, was performed in a HT test system at atmospheric pressure. Promising catalyst candidates identified by HT analysis were further subjected to high pressure FTS in a conventional system. Results indicate that coupled with Mn, Ni promoted $CH_4$ production, Cu increased CO conversion, K enhanced olefin selectivity and olefin-to-paraffin ratio. In double promotion of Cu and K, Cu balanced the activity and stability loss due to K, while K enhanced olefin selectivity. n-pentane aided impregnation slightly enhanced catalytic performance. Differences observed in catalytic performance were regarded as related to the structural changes caused by promoter and impregnation type based on characterization data obtained by 4H_2-$TPR, XRD, SEM, EDS mapping and N2 adsorption.
Anahtar Kelime: Fischer–Tropsch synthesis light olefins Fe-Mn-Cu-K n-pentane solvent high-throughput

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012; 335 (6070): 835-8. doi: 10.1126/science.1215614
  • 2. Dement’ev KI, Sagaradze AD, Kuznetsov PS, Palankoev TA, Maximov AL. Selective Production of Light Olefins from Fischer–Tropsch Synthetic Oil by Catalytic Cracking. Industrial & Engineering Chemistry Research 2020; 59 (36): 15875-83. doi: 10.1021/acs.iecr.0c02753
  • 3. Mahmoudi H, Mahmoudi M, Doustdar O, Jahangiri H, Tsolakis A, Gu S, et al. A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Engineering 2017; 2 (1): 11-31. doi: 10.1515/bfuel-2017-0002
  • 4. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S. A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology 2014; 4 (8): 2210-29. doi: 10.1039/C4CY00327F
  • 5. Gholami Z, Zabidi NAM, Gholami F, Ayodele OB, Vakili M. The influence of catalyst factors for sustainable production of hydrocarbons via Fischer-Tropsch synthesis. Reviews in Chemical Engineering 2017; 33 (4): 337-58. doi: 10.1515/revce-2016-0009
  • 6. Tihay F, Roger AC, Kiennemann A, Pourroy G. Fe–Co based metal/spinel to produce light olefins from syngas. Catalysis Today 2000; 58 (4): 263-9. doi: 10.1016/S0920-5861(00)00260-1
  • 7. Cheng K, Gu B, Liu X, Kang J, Zhang Q, Wang Y. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon–Carbon Coupling. Angewandte Chemie International Edition 2016; 55 (15): 4725-8. doi: 10.1002/anie.201601208
  • 8. Hodala JL, Moon DJ, Reddy KR, Reddy CV, Kumar TN, Ahamed MI, et al. Catalyst design for maximizing C5+ yields during Fischer- Tropsch synthesis. International Journal of Hydrogen Energy 2021; 46 (4): 3289-301. doi: 10.1016/j.ijhydene.2019.12.021
  • 9. Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis A: General 1997; 161 (1): 59-78. doi: 10.1016/S0926-860X(97)00186-5
  • 10. Zhang Q, Kang J, Wang Y. Development of Novel Catalysts for Fischer–Tropsch Synthesis: Tuning the Product Selectivity. ChemCatChem 2010; 2 (9): 1030-58. doi: 10.1002/cctc.201000071
  • 11. Tian Z, Wang C, Si Z, Ma L, Chen L, Liu Q, et al. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method. Applied Catalysis A: General 2017; 541: 50-9. doi: 10.1016/j.apcata.2017.05.001
  • 12. Barrios AJ, Gu B, Luo Y, Peron DV, Chernavskii PA, Virginie M et al. Identification of efficient promoters and selectivity trends in high temperature Fischer-Tropsch synthesis over supported iron catalysts. Applied Catalysis B: Environmental 2020; 273: 119028. doi: 10.1016/j. apcatb.2020.119028
  • 13. Venter J, Kaminsky M, Geoffroy GL, Vannice MA. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2: I. Chemisorption and catalytic behavior. Journal of Catalysis 1987; 103 (2): 450-65. doi: 10.1016/0021-9517(87)90136-9
  • 14. Li T, Yang Y, Zhang C, An X, Wan H, Tao Z et al. Effect of manganese on an iron-based Fischer–Tropsch synthesis catalyst prepared from ferrous sulfate. Fuel 2007; 86 (7): 921-8. doi: 10.1016/j.fuel.2006.10.019
  • 15. Li S, Li A, Krishnamoorthy S, Iglesia E. Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of Iron-Based Fischer–Tropsch Synthesis Catalysts. Catalysis Letters 2001; 77 (4): 197-205. doi: 10.1023/A:1013284217689
  • 16. Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P et al. Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology. Applied Catalysis A: General 2006; 311: 66-75. doi: 10.1016/j.apcata.2006.06.007
  • 17. Badoga S, Kamath G, Dalai A. Effects of promoters (Mn, Mg, Co and Ni) on the Fischer-Tropsch activity and selectivity of KCuFe/ mesoporous-alumina catalyst. Applied Catalysis A: General 2020; 607: 117861. doi: 10.1016/j.apcata.2020.117861
  • 18. Li T, Wang H, Yang Y, Xiang H, Li Y. Study on an iron–nickel bimetallic Fischer–Tropsch synthesis catalyst. Fuel Processing Technology 2014; 118: 117-24. doi: 10.1016/j.fuproc.2013.08.015
  • 19. Feyzi M, Mirzaei AA. Performance and characterization of iron-nickel catalysts for light olefin production. Journal of Natural Gas Chemistry 2010; 19 (4): 422-30. doi: 10.1016/S1003-9953(09)60092-X
  • 20. Mirzaei AA, Kiai RM, Atashi H, Arsalanfar M, Shahriari S. Kinetic study of CO hydrogenation over co-precipitated iron–nickel catalyst. Journal of Industrial and Engineering Chemistry 2012; 18 (4): 1242-51. doi: 10.1016/j.jiec.2012.01.003
  • 21. Udrea I, Frunza L, Catana G. Al 2 O 3-supported Fe− Ni catalysts for CO hydrogenation, II. Characterization by IR spectra of CO adspecies. Reaction Kinetics and Catalysis Letters 1994; 53 (2): 459-65. doi: 10.1007/BF02073054
  • 22. Cheng Y, Lin J, Xu K, Wang H, Yao X, Pei Y, et al. Fischer–Tropsch Synthesis to Lower Olefins over Potassium-Promoted Reduced Graphene Oxide Supported Iron Catalysts. ACS Catalysis 2016; 6 (1): 389-99. doi: 10.1021/acscatal.5b02024
  • 23. Ma W, Kugler EL, Dadyburjor DB. Potassium Effects on Activated-Carbon-Supported Iron Catalysts for Fischer−Tropsch Synthesis. Energy & Fuels 2007; 21 (4): 1832-42 doi: 10.1021/ef060654e
  • 24. Raje AP, O’Brien RJ, Davis BH. Effect of Potassium Promotion on Iron-Based Catalysts for Fischer–Tropsch Synthesis. Journal of Catalysis 1998; 180 (1): 36-43. doi: 10.1006/jcat.1998.2259
  • 25. Xiong H, Motchelaho MA, Moyo M, Jewell LL, Coville NJ. Effect of Group I alkali metal promoters on Fe/CNT catalysts in Fischer– Tropsch synthesis. Fuel 2015; 150: 687-96. doi: 10.1016/j.fuel.2015.02.099
  • 26. Hexana WM. A Systematic Study of the Effect of Chemical Propmotors on the Precipitated Fe-based Fischer-Tropsch Synthesis Catalyst. University of the Witwatersrand, 2009.
  • 27. Mirzaei AA, Faizi M, Habibpour R. Effect of preparation conditions on the catalytic performance of cobalt manganese oxide catalysts for conversion of synthesis gas to light olefins. Applied Catalysis A: General 2006; 306: 98-107. doi: 10.1016/j.apcata.2006.03.036
  • 28. Chen YW, Wang HT, Goodwin JG. Effect of preparation methods on the catalytic properties of zeolite-supported ruthenium in the Fischer- Tropsch synthesis. Journal of Catalysis 1983; 83 (2): 415-27. doi: 10.1016/0021-9517(83)90066-0
  • 29. Duvenhage DJ, Coville NJ. Fe:Co/TiO2 bimetallic catalysts for the Fischer–Tropsch reaction: Part 2. The effect of calcination and reduction temperature. Applied Catalysis A: General 2002; 233 (1): 63-75. doi: 10.1016/S0926-860X(02)00118-7
  • 30. Liu C, Chen Y, Zhao Y, Lyu S, Wei L, Li X, et al. Nano-ZSM-5-supported cobalt for the production of liquid fuel in Fischer-Tropsch synthesis: Effect of preparation method and reaction temperature. Fuel. 2020; 263: 116619. doi: 10.1016/j.fuel.2019.116619
  • 31. Zhang Y, Liu Y, Yang G, Sun S, Tsubaki N. Effects of impregnation solvent on Co/SiO2 catalyst for Fischer-Tropsch synthesis: A highly active and stable catalyst with bimodal sized cobalt particles. Applied Catalysis A: General. 2007; 321 (1): 79-85. doi: 10.1016/j. apcata.2007.01.030
  • 32. Ho S-W, Su Y-S. Effects of Ethanol Impregnation on the Properties of Silica-Supported Cobalt Catalysts. Journal of Catalysis 1997; 168 (1): 51-9. doi: 10.1006/jcat.1997.1614
  • 33. Senkan S, Krantz K, Ozturk S, Zengin V, Onal I. High throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry. Angewandte Chemie International Edition 1999; 38 (18): 2794-9. doi: 10.1002/(SICI)1521- 3773(19990917)38:18<2794::AID-ANIE2794>3.0.CO;2-A
  • 34. Lohitharn N, Goodwin JG, Lotero E. Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters. Journal of Catalysis 2008; 255 (1): 104-13. doi: 10.1016/j.jcat.2008.01.026
  • 35. Enger BC, Holmen A. Nickel and Fischer-Tropsch Synthesis. Catalysis Reviews 2012; 54 (4): 437-88. doi: 10.1080/01614940.2012.670088
  • 36. Özkara-Aydınoğlu Ş, Ataç Ö, Gül ÖF, Kınayyiğit Ş, Şal S, Baranak M, et al. α-olefin selectivity of Fe–Cu–K catalysts in Fischer–Tropsch synthesis: Effects of catalyst composition and process conditions. Chemical Engineering Journal 2012; 181-182: 581-9. doi: 10.1016/j. cej.2011.11.094
  • 37. Wan H, Wu B, Zhang C, Xiang H, Li Y. Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer–Tropsch synthesis. Journal of Molecular Catalysis A: Chemical 2008; 283 (1): 33-42 doi: 10.1016/j.molcata.2007.12.013
  • 38. Han R, Min C, Liu X, Zhang Y, Xie Y, Sui Y. Controllable Synthesis of Mn3O4 Nanowires and Application in the Treatment of Phenol at Room Temperature. Nanomaterials 2020; 10: 461. doi: 10.3390/nano10030461
  • 39. Lobo LS, Rubankumar A. Investigation on structural and electrical properties of FeMnO3 synthesized by sol-gel method. Ionics 2019; 25 (3): 1341-50. doi: 10.1007/s11581-018-2776-z
  • 40. Izadi N, Rashidi A, Borghei M, Karimzadeh R, Tofigh A. Synthesis of carbon nanofibres over nanoporous Ni–MgO catalyst: influence of the bimetallic Ni–(Cu, Co, Mo) MgO catalysts. Journal of Experimental Nanoscience 2012; 7 (2): 160-73. doi: 10.1080/17458080.2010.513019
  • 41. Li S, O’Brien RJ, Meitzner GD, Hamdeh H, Davis BH, Iglesia E. Structural analysis of unpromoted Fe-based Fischer–Tropsch catalysts using X-ray absorption spectroscopy. Applied Catalysis A: General 2001; 219 (1): 215-22. doi: 10.1016/S0926-860X(01)00694-9
  • 42. Tuptup M, Kayaman-Apohan N, Özkara-Sarıoğlan Ş, Ünveren E, Ataç Ö et al. Poly(2,6-diphenyl-p-phenylene oxide) supported iron catalysts for the synthesis of lower olefins via Fischer–Tropsch reaction. Reaction Kinetics, Mechanisms and Catalysis 2021; 132 (2): 695- 715 doi: 10.1007/s11144-021-01964-3
  • 43. Arakawa H, Bell AT. Effects of potassium promotion on the activity and selectivity of iron Fischer-Tropsch catalysts. Industrial & Engineering Chemistry Process Design and Development 1983; 22 (1): 97-103 doi: 10.1021/i200020a017
  • 44. Maiti GC, Malessa R, Baerns M. Iron/manganese oxide catalysts for fischer-tropsch synthesis: Part I: structural and textural changes by calcination, reduction and synthesis. Applied Catalysis 1983; 5 (2): 151-70 doi: 10.1016/0166-9834(83)80129-8
  • 45. Leith IR, Howden MG. Temperature-programmed reduction of mixed iron—manganese oxide catalysts in hydrogen and carbon monoxide. Applied Catalysis. 1988;37:75-92 doi: 10.1016/S0166-9834(00)80752-6
  • 46. Tao Z, Yang Y, Wan H, Li T, An X, Xiang H et al. Effect of manganese on a potassium-promoted iron-based Fischer-Tropsch synthesis catalyst. Catalysis Letters 2007; 114 (3): 161-8 doi: 10.1007/s10562-007-9060-6
  • 47. Li T, Wang H, Yang Y, Xiang H, Li Y. Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis. Journal of Energy Chemistry 2013; 22 (4): 624-32. doi: 10.1016/S2095-4956(13)60082-0
  • 48. Han L, Wang C, Zhao G, Liu Y, Lu Y. Microstructured Al-fiber@meso-Al2O3@Fe-Mn-K Fischer–Tropsch catalyst for lower olefins. AIChE Journal 2016; 62 (3): 742-52. doi: 10.1002/aic.15061
  • 49. Sartipi S, Alberts M, Santos VP, Nasalevich M, Gascon J, Kapteijn F. Insights into the Catalytic Performance of Mesoporous H-ZSM-5- Supported Cobalt in Fischer–Tropsch Synthesis. ChemCatChem 2014; 6 (1): 142-51. doi: 10.1002/cctc.201300635
  • 50. Gong W, Ye R-P, Ding J, Wang T, Shi X, Russell CK et al. Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO2 emission. Applied Catalysis B: Environmental 2020; 278: 119302. doi: 10.1016/j. apcatb.2020.119302
  • 51. Zhang C-H, Yang Y, Teng B-T, Li T-Z, Zheng H-Y, Xiang H-W et al. Study of an iron-manganese Fischer–Tropsch synthesis catalyst promoted with copper. Journal of Catalysis 2006; 237 (2): 405-15. doi: 10.1016/j.jcat.2005.11.004
  • 52. Bukur DB, Mukesh D, Patel SA. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis. Industrial & Engineering Chemistry Research 1990; 29 (2): 194-204. doi: 10.1021/ie00098a008
  • 53. Jiang F, Zhang M, Liu B, Xu Y, Liu X. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer– Tropsch synthesis: understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation. Catalysis Science & Technology 2017; 7 (5) : 1245-65. doi: 10.1039/C7CY00048K
  • 54. Wang D, Chen B, Duan X, Chen D, Zhou X. Iron-based Fischer–Tropsch synthesis of lower olefins: The nature of χ-Fe5C2 catalyst and why and how to introduce promoters. Journal of Energy Chemistry 2016; 25 (6): 911-6. doi: 10.1016/j.jechem.2016.11.002
  • 55. Soled SL, Iglesia E, Miseo S, DeRites BA, Fiato RA. Selective synthesis of α-olefins on Fe-Zn Fischer-Tropsch catalysts. Topics in Catalysis 1995; 2 (1): 193-205. doi: 10.1007/BF01491967
  • 56. Dictor RA, Bell AT. Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts. Journal of Catalysis 1986; 97 (1): 121-36 doi: 10.1016/0021-9517(86)90043-6
  • 57. Han Z, Qian W, Zhang H, Ma H, Sun Q, Ying W. Effect of Rare-Earth Promoters on Precipitated Iron-Based Catalysts for Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research 2020; 59 (33): 14598-605. doi: 10.1021/acs.iecr.9b06760
  • 58. Li H, Li J, Ni H, Song D. Studies on cobalt catalyst supported on silica with different pore size for Fischer–Tropsch synthesis. Catalysis Letters 2006; 110 (1): 71-6. doi: 10.1007/s10562-006-0086-y
  • 59. Bukur DB, Todic B, Elbashir N. Role of water-gas-shift reaction in Fischer–Tropsch synthesis on iron catalysts: A review. Catalysis Today 2016; 275: 66-75. doi: 10.1016/j.cattod.2015.11.005
  • 60. Uykun Mangaloğlu D, Baranak M, Ataç Ö, Atakül H. Effect of the promoter presence in catalysts on the compositions of Fischer–Tropsch synthesis products. Journal of Industrial and Engineering Chemistry 2018; 66: 298-310. doi: 10.1016/j.jiec.2018.05.044
APA Gumuslu G, Atik Ö (2022). Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts. , 941 - 955. 10.55730/1300-0527.3406
Chicago Gumuslu Gamze,Atik Özge Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts. (2022): 941 - 955. 10.55730/1300-0527.3406
MLA Gumuslu Gamze,Atik Özge Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts. , 2022, ss.941 - 955. 10.55730/1300-0527.3406
AMA Gumuslu G,Atik Ö Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts. . 2022; 941 - 955. 10.55730/1300-0527.3406
Vancouver Gumuslu G,Atik Ö Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts. . 2022; 941 - 955. 10.55730/1300-0527.3406
IEEE Gumuslu G,Atik Ö "Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts." , ss.941 - 955, 2022. 10.55730/1300-0527.3406
ISNAD Gumuslu, Gamze - Atik, Özge. "Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts". (2022), 941-955. https://doi.org/10.55730/1300-0527.3406
APA Gumuslu G, Atik Ö (2022). Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts. Turkish Journal of Chemistry, 46(4), 941 - 955. 10.55730/1300-0527.3406
Chicago Gumuslu Gamze,Atik Özge Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts. Turkish Journal of Chemistry 46, no.4 (2022): 941 - 955. 10.55730/1300-0527.3406
MLA Gumuslu Gamze,Atik Özge Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts. Turkish Journal of Chemistry, vol.46, no.4, 2022, ss.941 - 955. 10.55730/1300-0527.3406
AMA Gumuslu G,Atik Ö Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts. Turkish Journal of Chemistry. 2022; 46(4): 941 - 955. 10.55730/1300-0527.3406
Vancouver Gumuslu G,Atik Ö Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts. Turkish Journal of Chemistry. 2022; 46(4): 941 - 955. 10.55730/1300-0527.3406
IEEE Gumuslu G,Atik Ö "Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts." Turkish Journal of Chemistry, 46, ss.941 - 955, 2022. 10.55730/1300-0527.3406
ISNAD Gumuslu, Gamze - Atik, Özge. "Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts". Turkish Journal of Chemistry 46/4 (2022), 941-955. https://doi.org/10.55730/1300-0527.3406