Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide

Yıl: 2022 Cilt: 46 Sayı: 4 Sayfa Aralığı: 968 - 986 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3408 İndeks Tarihi: 05-12-2022

Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide

Öz:
In this study, cotton spunlace nonwoven fabrics with four different basis weights were coated with graphene oxide (GO) by conventional dip coating method which is one of the most simple and effortless process in textile industry. The graphene oxide coated cotton nonwoven fabrics were immersed in an aqueous sodium dithionite solution in order to obtain reduced graphene oxide (RGO) coated cotton spunlace nonwoven fabrics. The obtained nonwoven fabrics became electrically conductive with very low surface electrical resistivity of $5.98 × 10^2$ W/sq for the 70 g/m2 basis weight nonwoven fabric. The color measurements and reflectance spectrophotometry were performed in order to identify the coating and reduction process of GO on cotton nonwoven fabrics. The hydrophobic characteristic of the GO and RGO coated cotton nonwoven fabrics were determined by the means of water contact angle. The ultraviolet (UV) blocking ability of the cotton nonwoven fabric both coated with GO and RGO were analyzed by the UV transmittance analyzer. The water contact angle results revealed that the hydrophilic cotton nonwoven fabric became hydrophobic due to the reduction of GO. It was also found that the ultraviolet protection factor (UPF) depends on the basis weight of the cotton nonwoven fabric and the reduction of GO.
Anahtar Kelime: Cotton nonwoven fabric graphene oxide coating reduction

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Gültekin BC, Gültekin ND, Atak O, Şimşek R. Evaluation of the Electromagnetic Shielding Effectiveness of Carbon-Based Screen Printed Polyester Fabrics. Fibers and Polymers 2018; 19 (2): 313-320. doi: 10.1007/s12221-018-7462-7
  • 2. Knittel D, Schollmeyer E. Electrically high-conductive textiles. Synthetic Metals 2009; 159 (14): 1433-1437. doi: 10.1016/j. synthmet.2009.03.021
  • 3. Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Science 2012; 258 (7): 2468-2472. doi: 10.1016/j.apsusc.2011.10.074
  • 4. Sharaf S, Higazy A, Hebeish A. Propolis induced antibacterial activity and other technical properties of cotton textiles. International Journal of Biological Macromolecules 2013; 59: 408-16. doi: 10.1016/j.ijbiomac.2013.04.030
  • 5. Gültekin BC, Akalin M, Yükseloğlu SM. The study of flame retardancy and thermal properties of SeaCell® fabrics. TEKSTİL ve KONFEKSİYON 2013; 23 (2): 107-112. doi:
  • 6. Yang H, Yang CQ. Durable flame retardant finishing of the nylon/cotton blend fabric using a hydroxyl-functional organophosphorus oligomer. Polymer Degradation and Stability 2005; 88 (3): 363-370. doi: 10.1016/j.polymdegradstab.2004.11.013
  • 7. Shateri Khalil-Abad M, Yazdanshenas ME. Superhydrophobic antibacterial cotton textiles. Journal of Colloid and Interface Science 2010; 351 (1): 293-298. doi: 10.1016/j.jcis.2010.07.049
  • 8. Hoefnagels HF, Wu D, de With G, Ming W. Biomimetic Superhydrophobic and Highly Oleophobic Cotton Textiles. Langmuir 2007; 23: 13158-13163. doi:
  • 9. Tang X, Tian M, Qu L, Zhu S, Guo X et al. Functionalization of cotton fabric with graphene oxide nanosheet and polyaniline for conductive and UV blocking properties. Synthetic Metals 2015; 202: 82-88. doi: 10.1016/j.synthmet.2015.01.017
  • 10. Xin JH, Daoud WA, Kong YY. A New Approach to UV-Blocking Treatment for Cotton Fabrics. Textile Research Journal 2004; 74 (2): 97-100. doi: 10.1177/004051750407400202
  • 11. Ramadoss A, Saravanakumar B, Kim SJ. Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy 2015; 15: 587-597. doi: 10.1016/j.nanoen.2015.05.009
  • 12. Hu XL, Tian MW, Qu LJ, Zhu SF, Han GT. Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 2015; 95: 625-633. doi: 10.1016/j.carbon.2015.08.099
  • 13. Shen C, Kao T, Huang C, Lee J. Wearable Band Using a Fabric-Based Sensor for Exercise ECG Monitoring. In: 2006 10th IEEE International Symposium on Wearable Computers; 2006. pp. 143-144.
  • 14. Sahito IA, Sun KC, Arbab AA, Qadir MB, Jeong SH. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide. Carbohydrate Polymers 2015; 130: 299-306. doi: 10.1016/j. carbpol.2015.05.010
  • 15. Hasani M, Montazer M. Electro-conductivity, bioactivity and UV protection of graphene oxide-treated cellulosic/polyamide fabric using inorganicandorganicreducingagents.TheJournalofTheTextileInstitute2017;108(10):1777-1786.doi: 10.1080/00405000.2017.1286700
  • 16. Cai G, Xu Z, Yang M, Tang B, Wang X. Functionalization of cotton fabrics through thermal reduction of graphene oxide. Applied Surface Science 2017; 393: 441-448. doi: 10.1016/j.apsusc.2016.10.046
  • 17. Di Y, Li Q, Zhuang X. Antibacterial Finishing of Tencel/Cotton Nonwoven Fabric Using Ag Nanoparticles-Chitosan Composite. Journal of Engineered Fibers and Fabrics 2012; 7 (2): 155892501200700205. doi: 10.1177/155892501200700205
  • 18. Asadi M, Montazer M. Multi-functional Polyester Hollow Fiber Nonwoven Fabric with Using Nano Clay/Nano TiO2/Polysiloxane Composites. Journal of Inorganic and Organometallic Polymers and Materials 2013; 23 (6): 1358-1367. doi: 10.1007/s10904-013-9937-3
  • 19. Pan Y-J, Lou C-W, Hsieh C-T, Huang C-H, Lin Z-I et al. Nonwoven fabric/spacer fabric/polyurethane foam composites: Physical and mechanical evaluations. Fibers and Polymers 2016; 17 (5): 789-794. doi: 10.1007/s12221-016-5736-0
  • 20. Erdem R, Rajendran S. Influence of Silver Loaded Antibacterial Agent on Knitted and Nonwoven Fabrics and Some Fabric Properties. Journal of Engineered Fibers and Fabrics 2016; 11 (1): 155892501601100107. doi: 10.1177/155892501601100107
  • 21. Akalin M, Yukseloglu SM, Gultekin BC, Agirgan AO. Novel Approach to Breathable Nonwoven Hygienic Products. In: Anand SC, Kennedy JF, Miraftab M, Rajendran S (editors). Medical Textiles and Biomaterials for Healthcare: Woodhead Publishing, 2006, pp. 201-208.
  • 22. Thangadurai K, Thilagavathi G, Bhattacharyya A. Characterization of needle-punched nonwoven fabrics for industrial air filter application. The Journal of The Textile Institute 2014; 105 (12): 1319-1326. doi: 10.1080/00405000.2014.895089
  • 23. Ozen MS, Sancak E, Beyit A, Usta I, Akalin M. Investigation of electromagnetic shielding properties of needle-punched nonwoven fabrics with stainless steel and polyester fiber. Textile Research Journal 2012. doi: 10.1177/0040517512461683
  • 24. Ozen MS, Sancak E, Soin N, Shah TH, Siores E. Investigation of electromagnetic shielding effectiveness of needle punched nonwoven fabric produced from conductive silver coated staple polyamide fibre. The Journal of The Textile Institute 2015; 107 (7): 912-922. doi: 10.1080/00405000.2015.1070604
  • 25. Ghali L, Halimi MT, Hassen MB, Sakli F. Effect of Blending Ratio of Fibers on the Properties of Nonwoven Fabrics Based of Alfa Fibers. Advances in Materials Physics and Chemistry 2014; 4 (6): 10. doi: 10.4236/ampc.2014.46014
  • 26. Jain RK, Sinha SK, Das A. Structural investigation of spunlace nonwoven. Research Journal of Textile and Apparel 2018; 22 (3): 158-179. doi: 10.1108/RJTA-07-2017-0038
  • 27. Maiti S, Bele VS, Basu SK. Effect of material properties and process parameters on properties of hydroentangled nonwoven fabrics. The Journal of The Textile Institute 2021; 112 (6): 914-920. doi: 10.1080/00405000.2020.1791398
  • 28. Gültekin E, Çelik Hİ, Nohut S, Elma SK. Predicting air permeability and porosity of nonwovens with image processing and artificial intelligence methods. The Journal of The Textile Institute 2020; 111 (11): 1641-1651. doi: 10.1080/00405000.2020.1727267
  • 29. Yang J, Pu Y, He H, Cao R, Miao D et al. Superhydrophobic cotton nonwoven fabrics through atmospheric plasma treatment for applications in self-cleaning and oil–water separation. Cellulose 2019; 26 (12): 7507-7522. doi: 10.1007/s10570-019-02590-y
  • 30. Singh V, Joung D, Zhai L, Das S, Khondaker SI et al. Graphene based materials: Past, present and future. Progress in Materials Science 2011; 56 (8): 1178-1271. doi: 10.1016/j.pmatsci.2011.03.003
  • 31. Zhang L, Liang J, Huang Y, Ma Y, Wang Y et al. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 2009; 47 (14): 3365-3368. doi: 10.1016/j.carbon.2009.07.045
  • 32. Zhong Y, Zhen Z, Zhu H. Graphene: Fundamental research and potential applications. FlatChem 2017; 4: 20- 32. doi: 10.1016/j.flatc.2017.06.008
  • 33. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena 2014; 195: 145-154. doi: 10.1016/j. elspec.2014.07.003
  • 34. Ren S, Rong P, Yu Q. Preparations, properties and applications of graphene in functional devices: A concise review. Ceramics International 2018; 44 (11): 11940-11955. doi: 10.1016/j.ceramint.2018.04.089
  • 35. Li F, Jiang X, Zhao J, Zhang S. Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy 2015; 16: 488-515. doi: 10.1016/j.nanoen.2015.07.014
  • 36. Cheng H, Hu C, Zhao Y, Qu L. Graphene fiber: a new material platform for unique applications. NPG Asia Materials 2014; 6 (7): e113-e113. doi: 10.1038/am.2014.48
  • 37. Tissera ND, Wijesena RN, Perera JR, de Silva KMN, Amaratunge GAJ. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating. Applied Surface Science 2015; 324: 455-463. doi: 10.1016/j.apsusc.2014.10.148
  • 38. Abdelkader AM, Karim N, Vallés C, Afroj S, Novoselov KS et al. Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Materials 2017; 4 (3): 035016. doi: 10.1088/2053-1583/aa7d71
  • 39. Karim N, Afroj S, Malandraki A, Butterworth S, Beach C et al. All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. Journal of Materials Chemistry C 2017; 5 (44): 11640-11648. doi: 10.1039/c7tc03669h
  • 40. Fugetsu B, Sano E, Yu H, Mori K, Tanaka T. Graphene oxide as dyestuffs for the creation of electrically conductive fabrics. Carbon 2010; 48 (12): 3340-3345. doi: 10.1016/j.carbon.2010.05.016
  • 41. Ouadil B, Cherkaoui O, Safi M, Zahouily M. Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites. Applied Surface Science 2017; 414: 292-302. doi: 10.1016/j.apsusc.2017.04.068
  • 42. Mengal N, Sahito IA, Arbab AA, Sun KC, Qadir MB et al. Fabrication of a flexible and conductive lyocell fabric decorated with graphene nanosheets as a stable electrode material. Carbohydrate Polymers 2016; 152: 19-25. doi: 10.1016/j.carbpol.2016.06.099
  • 43. Xu LL, Guo MX, Liu S, Bian SW. Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Advances 2015; 5 (32): 25244-25249. doi: 10.1039/c4ra16063k
  • 44. Tian M, Hu X, Qu L, Du M, Zhu S et al. Ultraviolet protection cotton fabric achieved via layer-by-layer self-assembly of graphene oxide and chitosan. Applied Surface Science 2016; 377: 141-148. doi: 10.1016/j.apsusc.2016.03.183
  • 45. Mizerska U, Fortuniak W, Makowski T, Svyntkivska M, Piorkowska E et al. Electrically conductive and hydrophobic rGO-containing organosilicon coating of cotton fabric. Progress in Organic Coatings 2019; 137. doi: 10.1016/j.porgcoat.2019.105312
  • 46. Du D, Li P, Ouyang J. Graphene coated nonwoven fabrics as wearable sensors. Journal of Materials Chemistry C 2016; 4 (15): 3224-3230. doi: 10.1039/c6tc00350h
  • 47. Zhou X, Song W, Zhu G. A facile approach for fabricating silica dioxide/reduced graphene oxide coated cotton fabrics with multifunctional properties. Cellulose 2020; 27 (5): 2927-2938. doi: 10.1007/s10570-020-02990-5
  • 48. Božič M, Kokol V. Ecological alternatives to the reduction and oxidation processes in dyeing with vat and sulphur dyes. Dyes and Pigments 2008; 76 (2): 299-309. doi: 10.1016/j.dyepig.2006.05.041
  • 49. Roessler A, Jin X. State of the art technologies and new electrochemical methods for the reduction of vat dyes. Dyes and Pigments 2003; 59 (3): 223-235. doi: 10.1016/S0143-7208(03)00108-6
  • 50. Meksi N, Ben Ticha M, Kechida M, Mhenni MF. Using of ecofriendly α-hydroxycarbonyls as reducing agents to replace sodium dithionite in indigo dyeing processes. Journal of Cleaner Production 2012; 24 149-158. doi: 10.1016/j.jclepro.2011.11.062
  • 51. Shateri-Khalilabad M, Yazdanshenas ME. Fabricating electroconductive cotton textiles using graphene. Carbohydrate Polymers 2013; 96 (1): 190-5. doi: 10.1016/j.carbpol.2013.03.052
  • 52. Molina J, Fernández J, del Río AI, Bonastre J, Cases F. Chemical and electrochemical study of fabrics coated with reduced graphene oxide. Applied Surface Science 2013; 279: 46-54. doi: 10.1016/j.apsusc.2013.04.020
  • 53. Molina J, Fernández J, Inés JC, del Río AI, Bonastre J et al. Electrochemical characterization of reduced graphene oxide-coated polyester fabrics. Electrochimica Acta 2013; 93: 44-52. doi: 10.1016/j.electacta.2013.01.071
  • 54. Cao J, Wang C. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method. Applied Surface Science 2017; 405: 380-388. doi: 10.1016/j.apsusc.2017.02.017
  • 55. Cao J, Wang C. Highly conductive and flexible silk fabric via electrostatic self assemble between reduced graphene oxide and polyaniline. Organic Electronics 2018; 55: 26-34. doi: 10.1016/j.orgel.2017.12.016
  • 56. Gültekin N, Usta İ, Yalçin B. Green Reduction of Graphene Oxide Coated Polyamide Fabric Using Carob Extract. AATCC Journal of Research 2020; 7 (6): 33-40. doi: 10.14504/ajr.7.6.5
  • 57. Ajmeri JR, Ajmeri CJ. Developments in nonwoven materials for medical applications. In: Kellie G (editor). Advances in Technical Nonwovens. Duxford, CB22 4QH, UK: Woodhead Publishing, 2016, pp. 227-256.
  • 58. Gambichler T, Laperre J, Hoffmann K. The European standard for sun protective clothing: EN 13758. Journal of the European Academy of Dermatology and Venereology 2006; 20 (2): 125-130. doi:
  • 59. Laperre J, Foubert F. European Standards for Protective Apparel Against UV Radiation. In: Dummer R, Nestle FO, Burg G (editors). Cancers of the Skin Proceedings of the 8th World Congress. Heidelberg, Berlin, Germany: Springer Berlin, 2002, pp. 35-41.
  • 60. Pandiyarasan V, Archana J, Pavithra A, Ashwin V, Navaneethan M et al. Hydrothermal growth of reduced graphene oxide on cotton fabric for enhanced ultraviolet protection applications. Materials Letters 2017; 188: 123-126. doi: 10.1016/j.matlet.2016.11.047
  • 61. Dashairya L, Rout M, Saha P. Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation. Advanced Composites and Hybrid Materials 2017; 1 (1): 135-148. doi: 10.1007/s42114-017-0019-9
  • 62. Sahito IA, Sun KC, Arbab AA, Qadir MB, Jeong SH. Graphene coated cotton fabric as textile structured counter electrode for DSSC. Electrochimica Acta 2015; 173: 164-171. doi: 10.1016/j.electacta.2015.05.035
  • 63. Bhattacharjee S, Macintyre CR, Wen X, Bahl P, Kumar U et al. Nanoparticles incorporated graphene-based durable cotton fabrics. Carbon 2020; 166: 148-163. doi: 10.1016/j.carbon.2020.05.029
  • 64. Amesimeku J, Song W, Wang C. Fabrication of electrically conductive and improved UV-resistant aramid fabric via bio-inspired polydopamine and graphene oxide coating. The Journal of The Textile Institute 2019; 110 (10): 1484-1492. doi: 10.1080/00405000.2019.1607453
  • 65. Liu Y, Liu L, Li Z, Zhao Y, Yao J. Green and facile fabrication of smart cellulose composites assembled by graphene nanoplates for dual sensing. Cellulose 2019; 26 (17): 9255-9268. doi: 10.1007/s10570-019-02735-z
  • 66. Zhao J, Deng B, Lv M, Li J, Zhang Y et al. Graphene oxide-based antibacterial cotton fabrics. Advanced Healthcare Materials 2013; 2 (9): 1259-66. doi: 10.1002/adhm.201200437
  • 67. Chen X, Meng D, Wang B, Li B-W, Li W et al. Rapid thermal decomposition of confined graphene oxide films in air. Carbon 2016; 101: 71- 76. doi: 10.1016/j.carbon.2016.01.075
  • 68. Lavin-Lopez MP, Paton-Carrero A, Sanchez-Silva L, Valverde JL, Romero A. Influence of the reduction strategy in the synthesis of reduced graphene oxide. Advanced Powder Technology 2017; 28 (12): 3195-3203. doi: 10.1016/j.apt.2017.09.032
  • 69. Ren J, Wang C, Zhang X, Carey T, Chen K et al. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 2017; 111: 622-630. doi: 10.1016/j.carbon.2016.10.045
  • 70. Shateri-Khalilabad M, Yazdanshenas ME. Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose 2013; 20 (2): 963-972. doi: 10.1007/s10570-013-9873-y
  • 71. Das S, Bhowmick M, Chattopadhyay SK, Basak S. Application of biomimicry in textiles. Current Science 2015; 109 (5): 893-901. doi: 10.18520/vl 09/i5/893-901
APA Gültekin B (2022). Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide. , 968 - 986. 10.55730/1300-0527.3408
Chicago Gültekin Bekir Cenkkut Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide. (2022): 968 - 986. 10.55730/1300-0527.3408
MLA Gültekin Bekir Cenkkut Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide. , 2022, ss.968 - 986. 10.55730/1300-0527.3408
AMA Gültekin B Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide. . 2022; 968 - 986. 10.55730/1300-0527.3408
Vancouver Gültekin B Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide. . 2022; 968 - 986. 10.55730/1300-0527.3408
IEEE Gültekin B "Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide." , ss.968 - 986, 2022. 10.55730/1300-0527.3408
ISNAD Gültekin, Bekir Cenkkut. "Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide". (2022), 968-986. https://doi.org/10.55730/1300-0527.3408
APA Gültekin B (2022). Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide. Turkish Journal of Chemistry, 46(4), 968 - 986. 10.55730/1300-0527.3408
Chicago Gültekin Bekir Cenkkut Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide. Turkish Journal of Chemistry 46, no.4 (2022): 968 - 986. 10.55730/1300-0527.3408
MLA Gültekin Bekir Cenkkut Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide. Turkish Journal of Chemistry, vol.46, no.4, 2022, ss.968 - 986. 10.55730/1300-0527.3408
AMA Gültekin B Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide. Turkish Journal of Chemistry. 2022; 46(4): 968 - 986. 10.55730/1300-0527.3408
Vancouver Gültekin B Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide. Turkish Journal of Chemistry. 2022; 46(4): 968 - 986. 10.55730/1300-0527.3408
IEEE Gültekin B "Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide." Turkish Journal of Chemistry, 46, ss.968 - 986, 2022. 10.55730/1300-0527.3408
ISNAD Gültekin, Bekir Cenkkut. "Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide". Turkish Journal of Chemistry 46/4 (2022), 968-986. https://doi.org/10.55730/1300-0527.3408