Yıl: 2022 Cilt: 46 Sayı: 4 Sayfa Aralığı: 1042 - 1054 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3413 İndeks Tarihi: 06-12-2022

Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems

Öz:
In this study, the noncompetitive and competitive adsorption process of copper (II) and nickel (II) ions on the natural zeolite were examined in simulated wastewater in a batch system with respect to concentration, pH and temperature. Optimum pH values were found as 5,0 for adsorption of copper and nickel ions on the zeolite. The effect of initial concentration and ambient temperature on the yield of adsorption was examined at this pH value. The equilibrium adsorption data of Cu (II) and Ni (II) onto the zeolite were analyzed by the Langmuir’s and Freundlich’s isotherms, and the experimental metal uptake data fitted well with both isotherm models. In case of the presence of simultaneous multimetal ions in the aqueous phase, the adsorption capacity of the adsorbent is slightly low probably due to the competitive uptake of each metal ion by the adsorbent. For the metal sorption system, the negative Gibbs free energy values show the applicability and spontaneous nature of the metal uptake treatment by the zeolite. The activation energy and enthalpy change of divalent cation adsorption demonstrate that the intake of Cu (II) and Ni (II) onto the zeolite involves not only a chemical adsorption process but also a physical adsorption process.
Anahtar Kelime: Adsorption Natural zeolite mono- and dicomponent adsorption Cu (II) and Ni (II) contaminants

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Fenger J. Urban air quality. Atmospheric Environment 1999; 33 (29): 4877-4900. doi: 10.1016/S1352-2310(99)00290-3
  • 2. Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B. Global water pollution and human health. Annual Review of Environment and Resources 2010; 35: 109-136. doi: 10.1146/annurev-environ-100809-125342
  • 3. Verma R, Dwivedi P. Heavy metal water pollution-A case study. Recent Research in Science and Technology 2013; 5 (5): 98-99.
  • 4. Pandey B, Agrawal M, Singh S. Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research 2014; 5 (1): 79-86. doi: 10.5094/APR.2014.010
  • 5. Vardhan KH, Kumar PS, Panda RC. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids 2019; 290: 111197. doi: 10.1016/j.molliq.2019.111197
  • 6. Duruibe JO, Ogwuegbu M, Egwurugwu J. Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences 2007; 2 (5): 112-118.
  • 7. Parmar M, Thakur LS. Heavy metal Cu, Ni and Zn: toxicity, health hazards and their removal techniques by low cost adsorbents: a short overview. International Journal of Plant, Animal and Environmental Sciences 2013; 3 (3): 143-157.
  • 8. Manna AK, Rout K, Chowdhury S, Patra, GK. A dual-mode highly selective and sensitive Schiff base chemosensor for fluorescent colorimetric detection of Ni2+ and colorimetric detection of $Cu^{2+}$. Photochemical & Photobiological Sciences 2019; 18 (6): 1512-1525. doi: 10.1039/C9PP00114
  • 9. Mondal S, Kumari C, Hira SK, Dey S. Dual core clickate fluorophores for selective recognition of $Cu^{2+}$ and $Ni^{2+}$ along with live cell imaging. Inorganica Chimica Acta 2020; 509: 119655. doi: 10.1016/j.ica.2020.119655
  • 10. Chen Q, Yao Y, Li X, Lu J, Zhou J et al. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering 2018; 26: 289-300. doi: 10.1016/j.jwpe.2018.11.003
  • 11. Dabrowski A, Hubicki Z, Podkościelny P, Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004; 56 (2): 91-106. doi: 10.1016/j.chemosphere.2004.03.006
  • 12. Polat H, Erdogan D. Heavy metal removal from waste waters by ion flotation. Journal of Hazardous Materials 2007; 148 (1-2): 267-273. doi: 10.1016/j.jhazmat.2007.02.013
  • 13. Blöcher C, Dorda J, Mavrov V, Chmiel H, Lazaridis NK et al. Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Research 2003; 37 (16): 4018-4026. doi: 10.1016/S0043-1354(03)00314-2
  • 14. Tran TK, Chiu KF, Lin CY, Leu HJ. Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process. International Journal of Hydrogen Energy 2017; 42 (45): 27741-27748. doi: 10.1016/j.ijhydene.2017.05.156
  • 15. Sun Y, Zhou S, Pan SY, Zhu S, Yu Y et al. Performance evaluation and optimization of flocculation process for removing heavy metal. Chemical Engineering Journal 2020; 385: 123911. doi: 10.1016/j.cej.2019.123911
  • 16. Tripathi A, Ranjan MR. Heavy metal removal from wastewater using low cost adsorbents. Journal of Bioremediation & Biodegradation 2015; 6 (6): 315. doi: 10.4172/2155-6199.1000315
  • 17. Keng PS, Lee SL, Ha ST, Hung YT, Ong ST. Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environmental Chemistry Letters 2014; 12 (1): 15-25. doi: 10.1007/s10311-013-0427-1
  • 18. Aguayo AT, Gayubo AG, Ereña J, Olazar M, Arandes JM et al. Isotherms of chemical adsorption of bases on solid catalysts for acidity measurement. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology 1994; 60 (2): 141-146. doi: 10.1002/jctb.280600205
  • 19. Esenli F, Kadir S, Şans BE. Geochemistry of the zeolite-rich Miocene pyroclastic rocks from the Gördes, Demirci and Şaphane Regions, West Anatolia, Turkey. Geochemistry International 2019; 57 (11): 1158-1172. doi: 10.1134/S001670291911003X
  • 20. Hasan F. Hierarchical zeolites for improved separation performance: synthesis, characterization, growth mechanism and applications. PhD, Monash University, Melbourna, Australia, 2012.
  • 21. Ates A, Hardacre C. The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments. Journal of Colloid and Interface Science 2012; 372 (1): 130-140. doi: 10.1016/j.jcis.2012.01.017
  • 22. Olegario E, Pelicano CM, Felizco JC, Mendoza H. Thermal stability and heavy metal $(As^{5+}$, $Cu^{2+}$, $Ni^{2+}$, $Pb^{2+}$ and $Zn^{2+})$ ions uptake of the natural zeolites from the Philippines. Materials Research Express 2019; 6 (8): 085204. doi: 10.1088/2053-1591/ab1a73
  • 23. Cooney DO. Adsorption design for wastewater treatment: CRC press, 1998.
  • 24. Liu Y. Some consideration on the Langmuir isotherm equation. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2006; 274 (1-3): 34-36. doi: 10.1016/j.colsurfa.2005.08.029
  • 25. Skopp J. Derivation of the Freundlich Adsorption Isotherm from Kinetics. Journal of Chemical Education 2009; 86 (11): 1341. doi: 10.1021/ed086p1341
  • 26. Langmuir I. A new adsorption isotherm. Journal of the American Chemical Society 1918; 40: 1361-1403.
  • 27. Freundlich H. The Elements of Colloidal Chemistry: EP Dutton and Company, 1924.
  • 28. LeVan MD, Vermeulen T. Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. The Journal of Physical Chemistry 1981; 85 (22): 3247-3250. doi: 10.1021/j150622a009
  • 29. Bellot J, Condoret J. Modelling of liquid chromatography equilibria. Process Biochemistry 1993; 28 (6): 365-376. doi: 10.1016/0032- 9592(93)80023-A
  • 30. Fritz W, Schluender EU. Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chemical Engineering Science 1974; 29 (5): 1279-1282. doi: 10.1016/0009-2509(74)80128-4
  • 31. McKay G, Al Duri B. Prediction of multicomponent adsorption equilibrium data using empirical correlations. The Chemical Engineering Journal 1989; 41 (1): 9-23. doi: 10.1016/S0300-9467(98)80002-6
  • 32. Sing KS. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 1985; 57 (4): 603-619. doi: 10.1351/pac198557040603
  • 33. Mansouri N, Rikhtegar N, Panahi HA, Atabi F, Shahraki BK. Porosity, characterization and structural properties of natural zeolite- clinoptilolite-as a sorbent. Environment Protection Engineering 2013; 39 (1). doi: 10.5277/EPE130111
  • 34. Verboekend D, Keller TC, Milina M, Hauert R, Pérez-Ramírez J. Hierarchy Brings Function: Mesoporous Clinoptilolite and L Zeolite Catalysts Synthesized by Tandem Acid–Base Treatments. Chemistry of Materials 2013; 25 (9): 1947-1959. doi: 10.1021/cm4006103
  • 35. Abollino O, Giacomino A, Malandrino M, Mentasti E. Interaction of metal ions with montmorillonite and vermiculite. Applied Clay Science 2008; 38 (3-4): 227-236. doi: 10.1016/j.clay.2007.04.002
  • 36. Malandrino M, Abollino O, Giacomino A, Aceto M, Mentasti E. Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. Journal of Colloid and Interface Science 2006; 299 (2): 537-546. doi: 10.1016/j.jcis.2006.03.011
  • 37. Goldberg S, Johnston CT. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of colloid and Interface Science 2001; 234 (1): 204-216. doi: 10.1006/jcis.2000.7295
  • 38. McBride MB. A critique of diffuse double layer models applied to colloid and surface chemistry. Clays and Clay minerals 1997; 45 (4): 598- 608. doi: 10.1346/CCMN.1997.0450412
  • 39. Ali RM, Hamad HA, Hussein MM, Malash GF. Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering 2016; 91: 317-332. doi: 10.1016/j. ecoleng.2016.03.015
  • 40. Akpomie KG, Dawodu FA, Adebowale KO. Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal 2015; 54 (3): 757-767. doi: 10.1016/j.aej.2015.03.025
  • 41. Aytas SO, Akyil S, Eral M. Adsorption and thermodynamic behavior of uranium on natural zeolite. Journal of Radioanalytical and Nuclear Chemistry 2004; 260 (1): 119-125. doi: 10.1023/B:JRNC.0000027070.25215.92
  • 42. Ouki SK, Kavannagh M. Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Management & Research 1997; 15 (4): 383-394. doi: 10.1006/wmre.1996.0094
  • 43. Merrikhpour H, Jalali M. Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy 2013; 15 (2): 303-316. doi: 10.1007/s10098-012-0522-1
  • 44. Putro JN, Santoso SP, Ismadji S, Ju YH. Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: improvement on extended Langmuir isotherm model. Microporous and Mesoporous Materials 2017; 246: 166-177. doi: 10.1016/j.micromeso.2017.03.032
  • 45. Zou X, Zhao Y, Zhang Z. Preparation of hydroxyapatite nanostructures with different morphologies and adsorption behavior on seven heavy metals ions. Journal of Contaminant Hydrology 2019; 226: 103538. doi: 10.1016/j.jconhyd.2019.103538
  • 46. Alvarez-Ayuso E, Garcıa-Sánchez A, Querol X. Purification of metal electroplating waste waters using zeolites. Water Research 2003; 37 (20): 4855-4862. doi: 10.1016/j.watres.2003.08.009
  • 47. Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J. Study of the selection mechanism of heavy metal $(Pb^{2+}$, $Cu^{2+}$, $Ni^{2+}$, and $Cd^{2+})$ adsorption on clinoptilolite. Journal of Colloid and Interface Science 2006; 304 (1): 21-28. doi: 10.1016/j.jcis.2006.07.068
  • 48. Ijagbemi CO, Baek MH, Kim DS. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Journal of Hazardous Materials 2009; 166 (1): 538-546. doi: 10.1016/j.jhazmat.2008.11.085
  • 49. Taylor HS. The activation energy of adsorption processes. Journal of the American Chemical Society 1931; 53 (2): 578-597. doi: 10.1021/ ja01353a022
  • 50. Djawad F, Djamel N, Elhadj M, Samira A. Adsorption of $Ni^{2+}$ ions onto NaX and NaY zeolites: equilibrium, kinetics, intra crystalline diffusion, and thermodynamic studies. Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 2019; 38 (6): 63-81. doi: 10.30492/ IJCCE.2019.33252
  • 51. Wu L, Navrotsky A. Synthesis and thermodynamic study of transition metal ion $(Mn^{2+}$, Co$^{2+}$, Cu$^{2+}$, and $Zn^{2+}$) exchanged zeolites A and Y. Physical Chemistry Chemical Physics 2016; 18 (15): 10116-10122. doi: 10.1039/C5CP07918G
  • 52. Barrer RM, Townsend RP. Transition metal ion exchange in zeolites. Part 1.—Thermodynamics of exchange of hydrated $Mn^{2+}$, $Co^{2+}$, $Ni^{2+}$,$Cu^{2+}$ and $Zn^{2+}$ ions in ammonium mordenite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1976; 72: 661-673. doi: 10.1039/F19767200661
APA TEKIN B, Açıkel Ü (2022). Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. , 1042 - 1054. 10.55730/1300-0527.3413
Chicago TEKIN Burak,Açıkel Ünsal Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. (2022): 1042 - 1054. 10.55730/1300-0527.3413
MLA TEKIN Burak,Açıkel Ünsal Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. , 2022, ss.1042 - 1054. 10.55730/1300-0527.3413
AMA TEKIN B,Açıkel Ü Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. . 2022; 1042 - 1054. 10.55730/1300-0527.3413
Vancouver TEKIN B,Açıkel Ü Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. . 2022; 1042 - 1054. 10.55730/1300-0527.3413
IEEE TEKIN B,Açıkel Ü "Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems." , ss.1042 - 1054, 2022. 10.55730/1300-0527.3413
ISNAD TEKIN, Burak - Açıkel, Ünsal. "Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems". (2022), 1042-1054. https://doi.org/10.55730/1300-0527.3413
APA TEKIN B, Açıkel Ü (2022). Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. Turkish Journal of Chemistry, 46(4), 1042 - 1054. 10.55730/1300-0527.3413
Chicago TEKIN Burak,Açıkel Ünsal Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. Turkish Journal of Chemistry 46, no.4 (2022): 1042 - 1054. 10.55730/1300-0527.3413
MLA TEKIN Burak,Açıkel Ünsal Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. Turkish Journal of Chemistry, vol.46, no.4, 2022, ss.1042 - 1054. 10.55730/1300-0527.3413
AMA TEKIN B,Açıkel Ü Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. Turkish Journal of Chemistry. 2022; 46(4): 1042 - 1054. 10.55730/1300-0527.3413
Vancouver TEKIN B,Açıkel Ü Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. Turkish Journal of Chemistry. 2022; 46(4): 1042 - 1054. 10.55730/1300-0527.3413
IEEE TEKIN B,Açıkel Ü "Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems." Turkish Journal of Chemistry, 46, ss.1042 - 1054, 2022. 10.55730/1300-0527.3413
ISNAD TEKIN, Burak - Açıkel, Ünsal. "Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems". Turkish Journal of Chemistry 46/4 (2022), 1042-1054. https://doi.org/10.55730/1300-0527.3413