Yıl: 2022 Cilt: 46 Sayı: 4 Sayfa Aralığı: 1081 - 1088 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3416 İndeks Tarihi: 06-12-2022

Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures

Öz:
A low field benchtop electron spin resonance (ESR) (also referred to as electron paramagnetic resonance (EPR)) spectrometer is used to reveal paramagnetic centres such as oxygen vacancies and $Ti^{+3}$ centres over 0.5%Pd/$TiO_2$. The measurement was performed at room temperature after the sample was reduced in situ under mild hydrogen pressures and evacuated to P < 10–6 Torr. The measurement was possible due to a $T_1$ compensation effect under vacuum: Correlation times at low pressures enabled sufficient line narrowing and detection of the ESR signal, justifying a method using benchtop spectrometers coupled to vacuum manifolds. The method justification was demonstrated using similar measurements performed on a reference compound, Mn(II) in plasticine: a measurement performed by saturation recovery technique revealed that $T_1$ of the signal due to Mn(II) was smaller in vacuum than its atmosphere exposed counterpart. By applying vacuum, the ESR spectra of 0.5%Pd/$TiO_2$ were collected at ambient temperatures, with features equivalent to the published data obtained at cryogenic temperatures.
Anahtar Kelime: Room temperature electron spin resonance (ESR) room temperature electron paramagnetic resonance (EPR) low pressure ESR saturation-recovery CW-ESR

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Okamoto H. O-Ti (Oxygen-Titanium). Journal of Phase Equilibria and Diffusion. 2011; 32 (5): 473-474. doi: 10.1007/s11669-011-9935-5
  • 2. Diebold U, Lehman J, Mahmoud T, Kuhn M, Leonardelli G et al. Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surface Science. 1998; 411 (1-2): 137-153. doi: 10.1016/S0039-6028(98)00356-2
  • 3. Guillemot F, Porté MC, Labrugère C, Baquey C. Ti4+ to Ti3+ Conversion of TiO2 Uppermost Layer by Low-Temperature Vacuum Annealing: Interest for Titanium Biomedical Applications. Journal of Colloid and Interface Science. 2002; 255 (1): 75-78. doi: 10.1006/ jcis.2002.8623
  • 4. Xiong L bin, Li JL, Yang B, Yu Y. Ti 3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. Journal of Nanomaterials. 2012; 2012 (February 2016). doi: 10.1155/2012/831524
  • 5. Wang G, Wang H, Ling Y, Tang Y, Yang X et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters. 2011; 11 (7): 3026-3033. doi: 10.1021/nl201766h
  • 6. Cho JM, Yun WJ, Lee JK, Lee H, So W et al. Electron spin resonance from annealed titania nanotubes. Applied Physics A. 2007; 88 (4): 751-755. doi: 10.1007/s00339-007-4063-0
  • 7. Canevali C, Morazzoni F, Scotti R, Bellobono I, Giusti M et al. Nanocrystalline TiO2 with enhanced photoinduced charge separation as catalyst for the phenol degradation. International Journal of Photoenergy. 2006; 2006: 1-6. doi: 10.1155/IJP/2006/90809
  • 8. Sekiya T, Takeda H, Kamiya N, Kurita S, Kodaira T. EPR of anatase titanium dioxide under uv light irradiation. Physica Status Solidi (c). 2006; 3 (10): 3603-3606. doi: 10.1002/pssc.200672152
  • 9. Komaguchi K, Nakano H, Araki A, Harima Y. Photoinduced electron transfer from anatase to rutile in partially reduced TiO2 (P-25) nanoparticles: An ESR study. Chemical Physics Letters. 2006; 428 (4-6): 338-342. doi: 10.1016/j.cplett.2006.07.003
  • 10. Macdonald IR, Rhydderch S, Holt E, Grant N, Storey JMD et al. EPR studies of electron and hole trapping in titania photocatalysts. Catalysis Today. 2012; 182 (1): 39-45. doi: 10.1016/j.cattod.2011.08.039
  • 11. Liu N, Zhou X, Nguyen NT, Peters K, Zoller F et al. Black magic in gray titania: noble-metal-free photocatalytic H2 evolution from hydrogenated anatase. ChemSusChem. 2017; 10 (1): 62-67. doi: 10.1002/cssc.201601264
  • 12. Strunk J, Vining WC, Bell AT. A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48. The Journal of Physical Chemistry C. 2010; 114 (40): 16937-16945. doi: 10.1021/jp100104d
  • 13. Nakaoka Y, Nosaka Y. ESR Investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology A: Chemistry. 1997; 110 (3): 299-305. doi: 10.1016/S1010-6030(97)00208-6
  • 14. Howe RF, Gratzel M. EPR observation of trapped electrons in colloidal titanium dioxide. The Journal of Physical Chemistry. 1985; 89 (21): 4495-4499. doi: 10.1021/j100267a018
  • 15. Khan ME, Khan MM, Min BK, Cho MH. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Scientific Reports. 2018; 8 (1): 1723. doi: 10.1038/s41598-018-19617-2
  • 16. Xu Y, Zhang C, Zhang L, Zhang X, Yao H et al. Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance. Energy and Environmental Science. 2016; 9 (7): 2410-2417. doi: 10.1039/c6ee00830e
  • 17. Weil JA, Bolton JR. Electron Paramagnetic Resonance. John Wiley & Sons, Inc.; 2006. doi: 10.1002/0470084987
  • 18. Uner D, Tapan NA, Özen I, Üner M. Oxygen adsorption on Pt/TiO2 catalysts. Applied Catalysis A: General. 2003; 251 (2): 225-234. doi: 10.1016/S0926-860X(03)00317-X
  • 19. Wheeler DA, Ling Y, Dillon RJ, Fitzmorris RC, Dudzik C, et al. Probing the nature of bandgap states in hydrogen-treated TiO2 nanowires. Journal of Physical Chemistry C. 2013; 117 (50): 26821-26830. doi: 10.1021/jp409857j
  • 20. Attwood AL, Murphy DM, Edwards JL, Egerton TA, Harrison RW. An EPR study of thermally and photochemically generated oxygen radicals on hydrated and dehydrated titania surfaces. Research on Chemical Intermediates. 2003; 29 (5): 449-465. doi: 10.1163/156856703322148991
  • 21. Berger T, Sterrer M, Diwald O, Knözinger E, Panayotov D et al. Light-induced charge separation in anatase TiO2 particles. Journal of Physical Chemistry B. 2005; 109 (13): 6061-6068. doi: 10.1021/jp0404293
  • 22. Goldfarb D, Stoll S. EPR Spectroscopy Fundamentals and Methods. 1st ed. Wiley; 2018.
  • 23. Levitt MH. Spin Dynamics Basics of Nuclear Magnetic Resonance Second Edition. Chichester: John Wiley & Sons; 2008.
  • 24. Dikanov SA, Crofts AR. Electron paramagnetic resonance spectroscopy. In: Vij DR, (editors). Handbook of Applied Solid State Spectroscopy. 1st ed. Springer US; 2006: 97-149. doi: 10.1007/0-387-37590-2_3
  • 25. Eaton SS, Eaton GR. Saturation recovery EPR. In: Eaton SS, Eaton GR, Berliner LJ, (editors). Biomedical EPR, Part B: Methodology, Instrumentation, and Dynamics. 1st ed. Kluwer Academic Publishers-Plenum Publishers; 2005: 3-18. doi: 10.1007/0-306-48533-8_1
  • 26. Rocker J, Cornu D, Kieseritzky E, Seiler A, Bondarchuk O et al. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—a multipurpose machine to study paramagnetic species on well defined single crystal surfaces. Review of Scientific Instruments. 2014; 85 (8): 083903. doi: 10.1063/1.4893729
  • 27. Hochstrasser G, Antonini JF. Surface states of pristine silica surfaces. Surface Science. 1972; 32 (3): 644-664. doi: 10.1016/0039- 6028(72)90192-6
APA Uner D, Yarar M (2022). Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures. , 1081 - 1088. 10.55730/1300-0527.3416
Chicago Uner Deniz,Yarar Melis Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures. (2022): 1081 - 1088. 10.55730/1300-0527.3416
MLA Uner Deniz,Yarar Melis Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures. , 2022, ss.1081 - 1088. 10.55730/1300-0527.3416
AMA Uner D,Yarar M Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures. . 2022; 1081 - 1088. 10.55730/1300-0527.3416
Vancouver Uner D,Yarar M Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures. . 2022; 1081 - 1088. 10.55730/1300-0527.3416
IEEE Uner D,Yarar M "Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures." , ss.1081 - 1088, 2022. 10.55730/1300-0527.3416
ISNAD Uner, Deniz - Yarar, Melis. "Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures". (2022), 1081-1088. https://doi.org/10.55730/1300-0527.3416
APA Uner D, Yarar M (2022). Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures. Turkish Journal of Chemistry, 46(4), 1081 - 1088. 10.55730/1300-0527.3416
Chicago Uner Deniz,Yarar Melis Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures. Turkish Journal of Chemistry 46, no.4 (2022): 1081 - 1088. 10.55730/1300-0527.3416
MLA Uner Deniz,Yarar Melis Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures. Turkish Journal of Chemistry, vol.46, no.4, 2022, ss.1081 - 1088. 10.55730/1300-0527.3416
AMA Uner D,Yarar M Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures. Turkish Journal of Chemistry. 2022; 46(4): 1081 - 1088. 10.55730/1300-0527.3416
Vancouver Uner D,Yarar M Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures. Turkish Journal of Chemistry. 2022; 46(4): 1081 - 1088. 10.55730/1300-0527.3416
IEEE Uner D,Yarar M "Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures." Turkish Journal of Chemistry, 46, ss.1081 - 1088, 2022. 10.55730/1300-0527.3416
ISNAD Uner, Deniz - Yarar, Melis. "Oxygen vacancies on $Pd/TiO_2$ are detected at low pressures by ESR spectroscopy at ambient temperatures". Turkish Journal of Chemistry 46/4 (2022), 1081-1088. https://doi.org/10.55730/1300-0527.3416