Yıl: 2022 Cilt: 46 Sayı: 4 Sayfa Aralığı: 1137 - 1151 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3422 İndeks Tarihi: 06-12-2022

Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles

Öz:
This work reports the surface modification of polyacrylonitrile (PAN) fibers by graft copolymerization to ensure the decoration of homogenous and dense Ag nanoparticles. Two facile and subsequent modification processes resulted in a PAN fiber composite with an intact fibrous structure, sufficiently conductive for antistatic application and antibacterial activity. In the first step, some chemically attractive monomers and monomer mixtures, such as acrylic acid (AA), AA-itaconic acid (AA-IA), AA-acrylamide (AA-AAm), were introduced to the fiber surface by grafting. The grafting process was evidenced by FTIR, $^1H-NMR$, and SEM techniques. The second step aimed to form a chelate structure by $Ag^+$ ions with the coordination centers imparted to the PAN structure, and then, Ag nanoparticles (AgNPs) were decorated on the copolymer fiber surfaces by reducing with the NaBH4. The presence, distribution, and changes that occurred after the AgNPs decoration were also monitored by the SEM technique. It was obtained that the AgNPs could not be easily removed from the composites, which presented an appearance as if they were dyed with Ag. It was determined that the composite fibers gained a certain degree of conductivity with the surface resistivity value of $10^9$–$10^2$ Ω/$cm^2$. The antibacterial activity of the composites against E. coli and S. aureus was examined by the zone of inhibition test compared to their detergent-washed samples.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Rujitanaroj P-o, Pimpha N, Supaphol P. Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles. Journal of Applied Polymer Science 2010; 116 (4): 1967-1976. doi: 10.1002/app.31498
  • 2. Bagheri AR, Abdouss M, Shoushtari AM. Characterization and modification of commercial acrylic fibers grafted with acrylic acid . Materialwissenschaft und Werkstofftechnik 2009; 40 (11): 842-847. doi: 10.1002/mawe.200900523
  • 3. Celik M. Graft copolymerization of methacrylamide onto acrylic fibers initiated by benzoyl peroxide. Journal of Applied Polymer Science 2004; 94 (4): 1519-1525.
  • 4. Barut M, Kalkan Erdoğan M, Karakışla M, Saçak M. The hydrophilic modification of acrylic textile fibers by grafting of 2-hydroxyethyl methacrylate and investigation of the imparted properties. Journal of Macromolecular Science Part A, 20211-13. doi: 10.1080/10601325.2021.1982647
  • 5. Jewrajka SK, Haldar S. Amphiphilic poly (acrylonitrile co acrylic acid)/silver nanocomposite additives for the preparation of antibiofouling membranes with improved properties. Polymer Composites 2011; 32 (11): 1851-1861.
  • 6. Yang MC, Tong JH. Loose ultrafiltration of proteins using hydrolyzed polyacrylonitrile hollow fiber. Journal of Membrane Science, 1997; 132 (1): 63-71. doi: 10.1016/S0376-7388(97)00038-0
  • 7. Hassan MM, Koyama K. Multifunctional acrylic fibers prepared via in-situ formed silver nanoparticles: Physicochemical, UV radiation protection, and antistatic properties. Dyes and Pigments 2018; 159 517-526. doi: 10.1016/j.dyepig.2018.07.013
  • 8. Nie G, Li Z, Lu X, Lei J, Zhang C et al. Fabrication of polyacrylonitrile/CuS composite nanofibers and their recycled application in catalysis for dye degradation. Applied Surface Science 2013; 284 595-600. doi: 10.1016/j.apsusc.2013.07.139
  • 9. Wang M-L, Jiang T-T, Lu Y, Liu H-J, Chen Y. Gold nanoparticles immobilized in hyperbranched polyethylenimine modified polyacrylonitrile fiber as highly efficient and recyclable heterogeneous catalysts for the reduction of 4-nitrophenol. Journal of Materials Chemistry A 2013; 1 (19): 5923-5933.
  • 10. Zhang C, Yang Q, Zhan N, Sun L, Wang H et al. Silver nanoparticles grown on the surface of PAN nanofiber: Preparation, characterization and catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 362 (1): 58-64.
  • 11. Wu Z-C, Zhang Y, Tao T-X, Zhang L, Fong H. Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water. Applied Surface Science 2010; 257 (3): 1092-1097.
  • 12. Tan HL, Sanira Putri MK, Idris SS, Hartikainen N, Abu Bakar NF et al. High-throughput fabrication of carbonized electrospun polyacrylonitrile/ poly(acrylic acid) nanofibers with additives for enhanced electrochemical sensing. Journal of Applied Polymer Science 2020; 137 (43): 49341. doi: 10.1002/app.49341
  • 13. Ruiz V, Pérez-Marquez A, Maudes J, Grande H-J, Murillo N. Enhanced photostability and sensing performance of graphene quantum dots encapsulated in electrospun polyacrylonitrile nanofibrous filtering membranes. Sensors and Actuators B: Chemical 2018; 262 902-912. doi: 10.1016/j.snb.2018.02.081
  • 14. Alarifi IM, Alharbi A, Khan WS, Swindle A, Asmatulu R. Thermal, electrical and surface hydrophobic properties of electrospun polyacrylonitrile nanofibers for structural health monitoring. Materials 2015; 8 (10): 7017-7031.
  • 15. Tauber MM, Cavaco-Paulo A, Robra K-H, Gübitz GM. Nitrile Hydratase and Amidase from Rhodococcus rhodochrous Hydrolyze Acrylic Fibers and Granular Polyacrylonitriles. Applied and Environmental Microbiology 2000; 66 (4): 1634-1638. doi: 10.1128/AEM.66.4.1634-1638.2000
  • 16. Battistel E, Morra M, Marinetti M. Enzymatic surface modification of acrylonitrile fibers. Applied Surface Science 2001; 177 (1): 32-41. doi: 10.1016/S0169-4332(01)00193-3
  • 17. Jin SY, Kim MH, Jeong YG, Yoon YI, Park WH. Effect of alkaline hydrolysis on cyclization reaction of PAN nanofibers. Materials & Design 2017; 124 69-77. doi: 10.1016/j.matdes.2017.03.066
  • 18. Deng S, Bai R, Chen J. Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. Journal of Colloid and İnterface Science 2003; 260 (2): 265-272.
  • 19. Horzum N, Shahwan T, Parlak O, Demir MM. Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions under continuous flow. Chemical Engineering Journal 2012; 213 41-49. doi: 10.1016/j.cej.2012.09.114
  • 20. Zhao H, Liu X, Yu M, Wang Z, Zhang B et al. A study on the degree of amidoximation of polyacrylonitrile fibers and ıts effect on their capacity to adsorb uranyl ıons. Industrial & Engineering Chemistry Research 2015; 54 (12): 3101-3106. doi: 10.1021/ie5045605
  • 21. Lin W, Lu Y, Zeng H. Studies of the preparation, structure, and properties of an acrylic chelating fiber containing amidoxime groups. Journal of Applied Polymer Science 1993; 47 (1): 45-52. doi: 10.1002/app.1993.070470107
  • 22. Bai G, Liu Y. Antistatic Property of Polyacrylonitrile Fiber by Plasma-grafting Treatment. Textile Research Journal, 2010; 80 (16): 1658-1664. doi: 10.1177/0040517510363195
  • 23. Hochart F, Levalois-Mitjaville J, De Jaeger R, Gengembre L, Grimblot J. Plasma surface treatment of poly(acrylonitrile) films by fluorocarbon compounds. Applied Surface Science 1999; 142 (1): 574-578. doi: 10.1016/S0169-4332(98)00702-8
  • 24. Zhang Z, Zhang L, Wang S, Chen W, Lei Y. A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization– reduction approach. Polymer 2001; 42 (19): 8315-8318. doi: 10.1016/S0032-3861(01)00285-3
  • 25. Çelik M, Qudrat ML, Akyüz E, Açik L. Synthesis and characterization of acrylic fibers-g-polyacrylamide. Fibers and Polymers 2012; 13 (2): 145- 152. doi: 10.1007/s12221-012-0145-5
  • 26. Rehan M, Nada AA, Khattab TA, Abdelwahed NAM, El-Kheir AAA. Development of multifunctional polyacrylonitrile/silver nanocomposite films: Antimicrobial activity, catalytic activity, electrical conductivity, UV protection and SERS-active sensor. Journal of Materials Research and Technology 2020; 9 (4): 9380-9394. doi: 10.1016/j.jmrt.2020.05.079
  • 27. Kalkan Erdoğan M, Aydoğdu Tığ G, Saçak M. A novel tool for the adsorption of dsDNA: Electrochemical reduction of Pd nanoparticles onto reduced-keratin particles extracted from wool wastes. Bioelectrochemistry 2021; 140 107835. doi: 10.1016/j.bioelechem.2021.107835
  • 28. Kim J, Lee JE, Lee J, Jang Y, Kim S-W et al. Generalized Fabrication of Multifunctional Nanoparticle Assemblies on Silica Spheres. Angewandte Chemie International Edition 2006; 45 (29): 4789-4793. doi: 10.1002/anie.200504107
  • 29. Mandal S, Roy D, Chaudhari RV, Sastry M. Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Zeolite: Excellent Catalysts for Hydrogenation and Heck Reactions. Chemistry of Materials 2004; 16 (19): 3714-3724. doi: 10.1021/cm0352504
  • 30. Chu Y-C, Tseng C-H, Hung K-T, Wang C-C, Chen C-Y. Surface modification of polyacrylonitrile fibers and their application in the preparation of silver nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials 2005; 15 (3): 309-317.
  • 31. Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T et al. Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. Journal of Nanomaterials 2015; 2015 136765. doi: 10.1155/2015/136765
  • 32. Zhang G, Xiao Y, Yin Q, Yan J, Zang C et al. In Situ Synthesis of Silver Nanoparticles on Amino-Grafted Polyacrylonitrile Fiber and Its Antibacterial Activity. Nanoscale Research Letters 2021; 16 (1): 36. doi: 10.1186/s11671-021-03496-0
  • 33. Metzler M, Chylińska M, Kaczmarek H. Preparation and characteristics of nanosilver composite based on chitosan-graft-acrylic acid copolymer. Journal of Polymer Research 2015; 22 (8): 146. doi: 10.1007/s10965-015-0781-8
  • 34. Coşkun R, Saçak M, Karakışla M. Graft copolymerization of an itaconic acid/acrylamide monomer mixture onto poly(ethylene terephthalate) fibers with benzoyl peroxide. Journal of Applied Polymer Science 2005; 97 (5): 1795-1803. doi: 10.1002/app.21917
  • 35. Saı̈hi D, El-Achari A, Ghenaim A, Claude C. Graft copolymerization of a mixture of perfluorooctyl-2 ethanol acrylic and stearyl methacrylate onto polyester fibers using benzoyl peroxide as initiator. Polymer Testing 2002; 21 (5): 607-612. doi: 10.1016/S0142-9418(01)00132-5
  • 36. Celik M, Sacak M. Grafting of acrylamide–methacrylic acid mixture onto poly(ethylene terephthalate) fibers by azobisisobutyronitrile. Journal of Applied Polymer Science 1996; 59 (4): 609-617. doi: 10.1002/(SICI)1097-4628(19960124)59:4<609::AID-APP6>3.0.CO;2-X
  • 37. El-Naggar AM, Zohdy MH, Sahar SM, Allam EA. Reactivity ratios during radiation-induced grafting of comonomer mixtures onto polyester fabrics. Polymer international, 2001; 50 (10): 1082-1088. doi: 10.1002/pi.748
  • 38. Teli MD, Sheikh J. Antibacterial and acid and cationic dyeable bamboo cellulose (rayon) fabric on grafting. Carbohydrate Polymers, 2012; 88 (4): 1281-1287. doi: 10.1016/j.carbpol.2012.02.005
  • 39. Cheng J-K, Zhang J, Kang Y, Qin Y-Y, Li Z-J et al. Syntheses, structures and photoluminescent properties of 1D, 2D, 3D silver (I) coordination polymers with flexible long-chain dinitriles and tetranitriles. Polyhedron 2004; 23 (14): 2209-2215. doi: 10.1016/j.poly.2004.06.035
  • 40. Wang Y, Yang Q, Shan G, Wang C, Du J et al. Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Materials Letters 2005; 59 (24): 3046-3049. doi: 10.1016/j.matlet.2005.05.016
  • 41. Ghosh K, Maiti SN. Mechanical properties of silver-powder-filled polypropylene composites. Journal of Applied Polymer Science 1996; 60 (3): 323-331. doi: 10.1002/(SICI)1097-4628(19960418)60:3<323::AID-APP5>3.0.CO;2-N
  • 42. Voronko Y, Eder GC, Knausz M, Oreski G, Koch T et al. Correlation of the loss in photovoltaic module performance with the ageing behaviour of the backsheets used. Progress in Photovoltaics: Research and Applications 2015; 23 (11): 1501-1515.
  • 43. Dumitrescu AM, Lisa G, Iordan AR, Tudorache F, Petrila I et al. Ni ferrite highly organized as humidity sensors. Materials Chemistry and Physics 2015; 156 170-179. doi: 10.1016/j.matchemphys.2015.02.044
  • 44. Vargová Z, Almáši M, Hudecová D, Titková D, Rostášová I et al. New silver(I) pyridinecarboxylate complexes: synthesis, characterization, and antimicrobial therapeutic potential. Journal of Coordination Chemistry 2014; 67 (6): 1002-1021. doi: 10.1080/00958972.2014.906588
  • 45. Vargová Z, Almáši M, Arabuli L, Györyová K, Zeleňák V et al. Utilization of IR spectral detailed analysis for coordination mode determination in novel Zn–cyclen–aminoacid complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2011; 78 (2): 788-793. doi: 10.1016/j.saa.2010.12.022
  • 46. Bryaskova R, Georgiev NI, Dimov SM, Tzoneva R, Detrembleur C et al. Novel nanosized water soluble fluorescent micelles with embedded perylene diimide fluorophores for potential biomedical applications: Cell permeability, localization and cytotoxicity. Materials Science and Engineering: C 2015; 51 7-15.
  • 47. Kummerlöwe G, Behl M, Lendlein A, Luy B. Artifact-free measurement of residual dipolar couplings in DMSO by the use of cross-linked perdeuterated poly (acrylonitrile) as alignment medium. Chemical Communications 2010; 46 (43): 8273-8275.
  • 48. Fang B, Ling Q, Zhao W, Ma Y, Bai P et al. Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/poly (acrylonitrile-co-acrylic acid) blended membrane. Journal of Membrane Science 2009; 329 (1): 46-55.
  • 49. Bajaj P, Sreekumar T, Sen K. Effect of reaction medium on radical copolymerization of acrylonitrile with vinyl acids. Journal of Applied Polymer Science 2001; 79 (9): 1640-1652.
  • 50. Zhang S, Wang C, Yuan H, Zhang B, Lin X et al. Antistatic behavior of PAN-based low-temperature carbonaceous fibers. Journal of Electrostatics 2013; 71 (6): 1036-1040. doi: 10.1016/j.elstat.2013.10.007
  • 51. Zhang S, Wang C-g, Yuan H, Zhu B, Yu M-j et al. Surface resistivity of carbonaceous fiber/PTFE antistatic coatings. Journal of Central South University 2014; 21 (5): 1689-1695.
  • 52. Cai X, Lin M, Tan S, Mai W, Zhang Y et al. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 2012; 50 (10): 3407-3415. doi: 10.1016/j.carbon.2012.02.002
  • 53. Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research 2010; 12 (5): 1531-1551. doi: 10.1007/s11051-010-9900-y
APA OKAY Z, KALKAN ERDOĞAN M, Karaca B, KARAKIŞLA M, Saçak M (2022). Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles. , 1137 - 1151. 10.55730/1300-0527.3422
Chicago OKAY Zeynep,KALKAN ERDOĞAN MERYEM,Karaca Başar,KARAKIŞLA Meral,Saçak Mehmet Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles. (2022): 1137 - 1151. 10.55730/1300-0527.3422
MLA OKAY Zeynep,KALKAN ERDOĞAN MERYEM,Karaca Başar,KARAKIŞLA Meral,Saçak Mehmet Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles. , 2022, ss.1137 - 1151. 10.55730/1300-0527.3422
AMA OKAY Z,KALKAN ERDOĞAN M,Karaca B,KARAKIŞLA M,Saçak M Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles. . 2022; 1137 - 1151. 10.55730/1300-0527.3422
Vancouver OKAY Z,KALKAN ERDOĞAN M,Karaca B,KARAKIŞLA M,Saçak M Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles. . 2022; 1137 - 1151. 10.55730/1300-0527.3422
IEEE OKAY Z,KALKAN ERDOĞAN M,Karaca B,KARAKIŞLA M,Saçak M "Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles." , ss.1137 - 1151, 2022. 10.55730/1300-0527.3422
ISNAD OKAY, Zeynep vd. "Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles". (2022), 1137-1151. https://doi.org/10.55730/1300-0527.3422
APA OKAY Z, KALKAN ERDOĞAN M, Karaca B, KARAKIŞLA M, Saçak M (2022). Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles. Turkish Journal of Chemistry, 46(4), 1137 - 1151. 10.55730/1300-0527.3422
Chicago OKAY Zeynep,KALKAN ERDOĞAN MERYEM,Karaca Başar,KARAKIŞLA Meral,Saçak Mehmet Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles. Turkish Journal of Chemistry 46, no.4 (2022): 1137 - 1151. 10.55730/1300-0527.3422
MLA OKAY Zeynep,KALKAN ERDOĞAN MERYEM,Karaca Başar,KARAKIŞLA Meral,Saçak Mehmet Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles. Turkish Journal of Chemistry, vol.46, no.4, 2022, ss.1137 - 1151. 10.55730/1300-0527.3422
AMA OKAY Z,KALKAN ERDOĞAN M,Karaca B,KARAKIŞLA M,Saçak M Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles. Turkish Journal of Chemistry. 2022; 46(4): 1137 - 1151. 10.55730/1300-0527.3422
Vancouver OKAY Z,KALKAN ERDOĞAN M,Karaca B,KARAKIŞLA M,Saçak M Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles. Turkish Journal of Chemistry. 2022; 46(4): 1137 - 1151. 10.55730/1300-0527.3422
IEEE OKAY Z,KALKAN ERDOĞAN M,Karaca B,KARAKIŞLA M,Saçak M "Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles." Turkish Journal of Chemistry, 46, ss.1137 - 1151, 2022. 10.55730/1300-0527.3422
ISNAD OKAY, Zeynep vd. "Investigation of antibacterial properties of polyacrylonitrile fibers modified by new functional groups and silver nanoparticles". Turkish Journal of Chemistry 46/4 (2022), 1137-1151. https://doi.org/10.55730/1300-0527.3422