Yıl: 2022 Cilt: 46 Sayı: 4 Sayfa Aralığı: 1176 - 1184 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3425 İndeks Tarihi: 06-12-2022

Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders

Öz:
The identification of the defects and secondary phases which significantly affect the material properties are of crucial importance. In this study, a systematic structure examination of $PbTiO_3$ and cobalt doped $PbTiO_3$ powder ceramics was carried out. X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), Raman, and electron paramagnetic resonance (EPR) spectroscopies were applied along with nonsimultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The doped and undoped $PbTiO_3$ materials were synthesized via a practical sol-gel route that takes place at 50 °C. The perovskite formation for both materials was verified. The dislocation density of cobalt doped $PbTiO_3$ was found to be 0.0121 $nm^{–2}$ while it was 0.00239 $nm^{–2}$ for the undoped material. Besides, a strong strain effect was observed for cobalt doped PbTiO3 via XRD. This was attributed to the $Co_3O_4$ phase which was detected through EPR and FT-IR analyses. The formation of the $Co_3O_4$ phase during synthesis revealed the previously unexpected nonimproved ferroelectric behavior for cobalt doped PbTiO3. The dielectric constant and the dielectric loss (tan δ) of cobalt doped $PbTiO_3$ were estimated as 1066 and 0.8370, respectively.
Anahtar Kelime: $Co_3O_4$ Doping sol-gel synthesis perovskite $PbTiO_3$

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Gamboa B, Bhalla A, Guo R. Assessment of PZT (soft/hard) composites for energy harvesting. Ferroelectrics 2020; 555: 118-123. doi: 10.1080/00150193.2019.1691389
  • 2. Song H-C, Kang C-Y, Yoon S-J, Jeong D-Y. Engineered domain configuration and piezoelectric energy harvesting in 0.7Pb(Mg1/3Nb2/3) O3-0.3PbTiO3 single crystals. Metals and Material International 2012; 18 (3): 499-503. doi: 10.1007/S12540-012-3018-Y
  • 3. Priya S, Myers RD. Piezoelectric energy harvester, US7649305B2, 2010.
  • 4. Hemeda OM, Eid MEA, Sharshar T, Ellabany HM, Henaish AMA. Synthesis of nanometer-sized PbZrxTi1-xO3 for gamma-ray attenuation. Journal of Physics and Chemistry of Solids 2021; 148: 109688. doi: 10.1016/j.jpcs.2020.109688
  • 5. Eid MEA, Hemeda OM, Sharshar T, Ellabany HM, Weinstein I et al. Can nano PZT-OPC composites be used as a smart γ-ray attenuator? Journal of Physics and Chemistry of Solids 2021; 159: 110254. doi: 10.1016/j.jpcs.2021.110254
  • 6. Liu Y, Ye S, Xie H, Zhu J, Shi Q et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Advanced Materials 2020; 32 (7): 1906513. doi: 10.1002/adma.201906513
  • 7. Zhu Q, Zhang K, Li D, Li N, Xu J et al. Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review. Chemical Engineering Journal 2021; 426: 131681. doi: 10.1016/j.cej.2021.131681
  • 8. Angoshtari A, Yavari A. Effect of strain and oxygen vacancies on the structure of 180° ferroelectric domain walls in PbTiO3. Computational Material Science 2010; 48: 258-266. doi: 10.1016/j.commatsci.2010.01.006
  • 9. Li G, Zheng L, Yin Q, Jiang B, Cao W. Microstructure and ferroelectric properties of MnO2-doped bismuth-layer (Ca, Sr)Bi4Ti4O15 ceramics. Journal of Applied Physics 2005; 98: 064108. doi: 10.1063/1.2058174
  • 10. Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. Academic Press, London, 1971.
  • 11. Kumar NS, Suvarna RP, Naidu KCB. Structural and ferroelectric properties of microwave heated lead cobalt titanate nanoparticles synthesized by sol–gel technique. Journal of Materials Science: Materials in Electronics 2018; 29: 4738–4742. doi: 10.1007/s10854-017-8429-6
  • 12. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallographica 1976; A32: 751-767. doi: 10.1107/S056773947600155
  • 13. Odabaşı S. Effect of cobalt doping on photocatalytic activity of lead titanate. M.Sc. Thesis, M.E.T.U., Ankara, 2018.
  • 14. Yang L, Wang Y, Wang X, Wang Y, Han G. Hydrothermal synthesis and characterization of PbTiO3 microrods. Advanced Material Research 2011; 149: 903–906.
  • 15. doi: 10.4028/www.scientific.net/AMR.148-149.903
  • 16. Ammar MH, El-hady MM, Salama TM, Bahgat AA. Reassess study of high temperature electric transport properties of PbTiO3. Journal of Alloys and Compounds 2019; 770 308-319. doi: 10.1016/j.jallcom.2018.08.113
  • 17. Elbasset A, Lamcharfi T, Abdi F, Mrharrab L and Sayouri S. Effect of doping with cobalt or copper on the structure of lead titanate PT. Indian Journal of Science and Technology 2015; 8 (12): 1-6. doi: 10.17485/ijst/2015/v8i12/56348
  • 18. Bersani D, Lottici PP, Montenero A, Pigoni S, Gnappi G. Phase transformations in sol-gel prepared PbTiO3. Journal of Material Science 1996; 31: 3153-3157. doi: 10.1007/BF00354661
  • 19. Lee C-Y, Tai N-H, Sheu H-S, Chiu H-T, Hsieh SH. The formation of perovskite PbTiO3 powders by sol–gel process. Materials Chemistry and Physics 2006; 97: 468-471. doi: 10.1016/j.matchemphys.2005.08.048
  • 20. Vinnik DA, Zherebtsov DA, Niewa R, Isaenko LI, Mikhailov GG. Distribution of dopant metals between PbTiO3 crystals and PbO–B2O3 flux. Russian Journal of General Chemistry 2014; 84: 1888–1892. doi: 10.1134/S107036321410003X
  • 21. Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica 1953; 1: 22-31. doi: 10.1016/0001- 6160(53)90006-6
  • 22. Gavrichev K, Bolshakov A, Kondakov D, Khoroshilov A, Denisov S. Thermal transformations of lead oxides. Journal of Thermal Analysis and Calorimetry 2008; 92: 857-863. doi: 10.1007/s10973-007-8590-x
  • 23. Peng X, Rong Y, Fan L, Lin K, Zhu H et al. Cation deficiency effect on negative thermal expansion of ferroelectric PbTiO3. Inorganic Chemistry Frontiers 2015; 2: 1091-1094. doi: 10.1039/C5QI00154D
  • 24. Kröger FA, Vink HJ. Relations between the concentrations of imperfections in crystalline solids. Solid State Physics 1956; 3: 307-435. doi: 10.1016/S0081-1947(08)60135-6
  • 25. Höhne GWH, Hemminger WF, Flammersheim H-J. Differential scanning calorimetry, 1st ed., Springer-Verlag, Berlin, 2003.
  • 26. Lima Elton C, Araújo EB. Phase transformations in pzt thin films prepared by polymeric chemical method. Advances in Materials Physics and Chemistry 2012; 2: 178-184. doi: 10.4236/ampc.2012.23027
  • 27. Kwok CK, Desu SB. Pyrochlore to perovskite phase transformation in sol-gel derived lead zirconate titanate thin films, Applied Physics Letters 1992; 60: 1430. doi: 10.1063/1.107312
  • 28. Wang Y, Xu G, Yang L, Ren Z, Wei X et al. Preparation of single-crystal PbTiO3 nanorods by phase transformation from Pb2Ti2O6 nanorods. Journal of Alloys and Compounds 2009; 481: L27-L30. doi: 10.1016/j.jallcom.2009.03.073
  • 29. Erünal E. Inhibition of secondary phase formation with minor copper doping on sol-gel derived PbTiO3 powders, Journal of Sol-Gel Science and Technology 2021; 101: 484-492. doi:
  • 30. 10.1007/s10971-021-05700-0
  • 31. Chauhan AKrS, Sreenivas K. TG-DTA and FT-IR studies on sol-gel derived Pb1-xCaxTiO3. Ferroelectrics 2005; 324: 77-81. doi: 10.1080/00150190500324659
  • 32. Chaudhari VA, Bichil GK. Sol–gel synthesis and characterization of lead titanate films. Cogent Chemistry 2015; 1: 1075323. doi: 10.1080/23312009.2015.1075323
  • 33. Toyoda M, Hamaji Y, Tomono K. Fabrication of PbTiO3 ceramic fibers by sol-gel processing. Journal of Sol-Gel Science and Technology 1997; 9: 71-84.
  • 34. doi: 10.1023/A:1026464424392
  • 35. Eichel R-A, Drahus MD, Jakes P, Erünal E, Erdem E et al. Defect structure and formation of defect complexes in Cu2+-modified metal oxides derived from a spin-Hamiltonian parameter analysis. Molecular Physics 2009; 107: 1981–1986. doi: 10.1080/00268970903084920
  • 36. Abragam A, Bleaney B. Electron paramagnetic resonance of transition ions, Clarendon Press, London, 1970.
  • 37. Weil JA, Bolton JR. Electron paramagnetic resonance–elementary theory and practical applications, 2nd ed., John Wiley & Sons, New Jersey, 2007.
  • 38. Telser J. A perspective on applications of ligand-field analysis: inspiration from electron paramagnetic resonance spectroscopy of coordination complexes of transition metal ions. Journal of the Brazilian Chemical Society 2006; 17: 1501-1515.
  • 39. doi: 10.1590/S0103-50532006000800005
  • 40. Lou Y, Wang L, Zhang Y, Zhao Z, Zhang Z et al. The effects of Bi2O3 on the CO oxidation over Co3O4. Catalysis Today 2011; 175: 610-614. doi: 10.1016/j.cattod.2011.03.064
  • 41. Greenwood NN, Earnshaw A. Chemistry of the elements, 2nd ed., Butterworth-Heinemann, Oxford, 1997.
  • 42. Roth WL. The magnetic structure of Co3O4. Journal of Physical Chemistry of Solids 1964; 25: 1–10. doi: 10.1016/0022-3697(64)90156-8
  • 43. Gawali SR, Gandhi AC, Gaikwad SS, Pant J, Chan T-S et al. Role of cobalt cations in short range antiferromagnetic Co3O4 nanoparticles: a thermal treatment approach to affecting phonon and magnetic properties. Scientific Reports 2018; 8: 249. doi: 10.1038/s41598-017-18563-9
  • 44. Szafraniak-Wiza I, Hilczer B, Pietraszko A, Talik E. Phase formations during mechanochemical synthesis of PbTiO3. Journal of Electroceramics 2008; 20: 21-25. doi: 10.1007/s10832-007-9339-4
  • 45. Burns G, Scott BA. Raman studies of underdamped soft modes in PbTiO3. Physical Review Letters 1970; 25: 167-170. doi: 10.1103/ PhysRevLett.25.167
  • 46. Meng JF, Katiyar RS, Zou GT. Grain size effect on ferroelectric phase transition in Pb1 − xBaxTiO3 ceramics. Journal of Physics and Chemistry of Solids 1998; 59: 1161-1167. doi: 10.1016/S0022-3697(97)00139-X
  • 47. Hu Y, Gu H, Sun X, You Jing, and Wang J. Photoluminescence and raman scattering studies on PbTiO3 nanowires fabricated by hydrothermal method at low temperature. Applied Physics Letters 2006; 88: 193120. doi: 10.1063/1.2203736
  • 48. Fontana MD, Idrissi H, Kugel GE, Wojcik K. Raman spectrum in PbTiO3 re-examined:dynamics of the soft phonon and the central peak. Journal of Physics: Condensed Matter 1991; 3: 8695-8705. doi: 10.1088/0953-8984/3/44/014
  • 49. Bartasyte A, Margueron S, Santiso J, Hlinka J, Simon E et al. Domain structure and Raman modes in PbTiO3. Phase Transitions 2011; 84: 509–520. doi: 10.1080/01411594.2011.552433
  • 50. Ma W, Zhang M, Lu Z. A study of size effects in PbTiO3 nanocrystals by raman spectroscopy. Physica Status Solidi a 1998; 166: 811-815. doi: 10.1002/(SICI)1521-396X(199804)166:2<811::AID-PSSA811>3.0.CO;2-X
  • 51. Yahyaoui MM, Limame K, Sayouri S, Jaber B and Laanab L. Synthesis and structural studies of sol gel processed nanopowders of lead doped Y2Ti2O7 pyrochlores. Journal of Ceramic Processing Research 2017; 18: 252-260.
  • 52. Zhao Q, Liu Q, Zheng Y, Han R, Song C et al. Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co3O4 nanowire. Chemosphere 2020; 244: 125532. doi: 10.1016/j.chemosphere.2019.125532
  • 53. Hsu M-C, Sun Y-M, Leu I-C, Hon M-H. Structural and electrical characterizations of PbTiO3 thin films grown on LaNiO3-buffered Pt/Ti/ SiO2/Si substrates by liquid phase deposition. Journal of the Electrochemical Society 2006; 153 (11): F260-F265. doi: 10.1149/1.2349279
  • 54. 50.Kwak JH, Han JK, Kang SW, Johnson TA, Bu SD. Dielectric relaxation properties of PbTiO3-multiwalled carbon nanotube composites prepared by a sol–gel process. Ceramics International 2016; 42 (7): 8165-8169. doi: 10.1016/j.ceramint.2016.02.023
  • 55. Kumar NS, Suvarna KP, Naidu KCB. Sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2–0.8) nanoparticles: Structural, morphological and dielectric properties. Ceramics International 2018; 44 (15): 18189-18199. doi: 10.1016/J.CERAMINT.2018.07.027
APA Erunal E (2022). Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders. , 1176 - 1184. 10.55730/1300-0527.3425
Chicago Erunal Ebru Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders. (2022): 1176 - 1184. 10.55730/1300-0527.3425
MLA Erunal Ebru Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders. , 2022, ss.1176 - 1184. 10.55730/1300-0527.3425
AMA Erunal E Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders. . 2022; 1176 - 1184. 10.55730/1300-0527.3425
Vancouver Erunal E Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders. . 2022; 1176 - 1184. 10.55730/1300-0527.3425
IEEE Erunal E "Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders." , ss.1176 - 1184, 2022. 10.55730/1300-0527.3425
ISNAD Erunal, Ebru. "Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders". (2022), 1176-1184. https://doi.org/10.55730/1300-0527.3425
APA Erunal E (2022). Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders. Turkish Journal of Chemistry, 46(4), 1176 - 1184. 10.55730/1300-0527.3425
Chicago Erunal Ebru Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders. Turkish Journal of Chemistry 46, no.4 (2022): 1176 - 1184. 10.55730/1300-0527.3425
MLA Erunal Ebru Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders. Turkish Journal of Chemistry, vol.46, no.4, 2022, ss.1176 - 1184. 10.55730/1300-0527.3425
AMA Erunal E Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders. Turkish Journal of Chemistry. 2022; 46(4): 1176 - 1184. 10.55730/1300-0527.3425
Vancouver Erunal E Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders. Turkish Journal of Chemistry. 2022; 46(4): 1176 - 1184. 10.55730/1300-0527.3425
IEEE Erunal E "Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders." Turkish Journal of Chemistry, 46, ss.1176 - 1184, 2022. 10.55730/1300-0527.3425
ISNAD Erunal, Ebru. "Detailed structure analyses on Cobalt doped Pb$TiO_3$ powders". Turkish Journal of Chemistry 46/4 (2022), 1176-1184. https://doi.org/10.55730/1300-0527.3425