Yıl: 2022 Cilt: 46 Sayı: 5 Sayfa Aralığı: 1376 - 1396 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3445 İndeks Tarihi: 06-12-2022

A review on the achievement of enzymatic glycerol carbonate production

Öz:
High energy demand driven by decreasing fossil fuels, and global warming because of the burning of fossil fuels necessitates the utilization of renewable and clean energy. One of these renewable energy sources is biodiesel. The increasing trend of biodiesel over the last 20 years tends to result in increasing glycerol (Gly), which is produced during the biodiesel production in 10% ratio (w/w) as a by-product. Using Gly as raw material is an alternative way to produce bio-based new products such as glycerol carbonate (GlyC). GlyC is a value-added product of Gly/vegetable oil and this product can be used as a potential fuel additive in the future because of its high oxygen content. Furthermore, GlyC shows a high reactivity; therefore, it is a bio-based building block for complex chemicals. The present review gives information about the bio-catalytic synthesis of GlyC from Gly/vegetable oil and, dimethyl carbonate (DMC). In addition, the influencing parameters of this bio-catalytic GlyC synthesis are discussed and reviewed in this paper.
Anahtar Kelime: Glycerol carbonate biofuel additive glycerol dimethyl carbonate biodiesel enzymatic transesterification

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Halkos GE, Gkampoura EC. Reviewing usage, potentials, and limitations of renewable energy sources. Energies 2020; 13 (2906): 1-19. doi: 10.3390/en13112906
  • 2. Rastegari AA, Yadav AG, Gupta A. Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies. Cham, Switzerland: Springer, 2019
  • 3. EIA1 (2019). Kahan A. EIA projects nearly 50% increase in world energy usage by 2050, led by growth in Asia - Today in Energy - U.S. Energy Information Administration (EIA) [online]. Website https://www.eia.gov/todayinenergy/detail.php?id=41433 [accessed 8 October 2021].
  • 4. EIA2 (2019). EIA projects global energy-related CO2 emissions will increase through 2050 - Today in Energy [online]. Website https:// www.eia.gov/todayinenergy/detail.php?id=41493 [accessed 8 October 2021].
  • 5. Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science 2007; 33 (3): 233-271. doi: 10.1016/j.pecs.2006.08.003
  • 6. Dincer I. Renewable energy and sustainable development: A crucial review. Renewable & sustainable energy reviews 2000; 4 (2): 157- 175. doi: 10.1016/S1364-0321(99)00011-8
  • 7. Lonngren KE, Bai EW. On the global warming problem due to carbon dioxide. Energy Policy 2008; 36: 1567–1568. doi: 10.1016/j. enpol.2007.12.019
  • 8. Huang D, Zhou H, Lin L. Biodiesel: An alternative to conventional fuel. Energy Procedia 2012; 16: 1874-1885. doi: 10.1016/j. egypro.2012.01.287
  • 9. Dorado MP, Ballesteros E, Arnal JM, Gómez J, López FJ. Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil. Fuel 2003; 82 (11): 1311-1315. doi: 10.1016/S0016-2361(03)00034-6
  • 10. Ciriminna R, Pina CD, Rossi M, Pagliaro M. Understanding the glycerol market. European Journal of Lipid Science and Technology 2014; 116 (10): 1432-1439. doi: 10.1002/ejlt.201400229
  • 11. Barros AA, Wust E, Meier HF. Evaluate the waste fatty acid by scientific and technical study to obtain biodiesel. Engenharia Sanitaria e Ambiental 2008; 13 (3): 255-262. doi: 10.1590/S1413-41522008000300003
  • 12. Berrios M, Skelton RL. Comparison of purification methods for biodiesel. Chemical Engineering Journal 2008; 144 (3): 459-465. doi: 10.1016/j.cej.2008.07.019
  • 13. Bournay L, Casanave D, Delfort B, Hillion G, Chodorge JA. New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catalysis Today 2005; 106: 190–192. doi: 10.1016/j. cattod.2005.07.181
  • 14. Norjannah B, Ong HC, Masjuki HH, Juan JC, Chong WT. Enzymatic transesterification for biodiesel production: A comprehensive review. RSC Advances 2016; 6 (65): 60034-60055. doi: 10.1039/c6ra08062f
  • 15. Quispe CAG, Coronado CJR, Carvalho JA. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews 2013; 27: 475-493. doi: 10.1016/j.rser.2013.06.017
  • 16. Zhou CH, Beltramini JN, Lu GQ. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chemical Society Reviews 2008; 37: 527–549. doi: 10.1039/b707343g
  • 17. Duane T, Taconi JTK. The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress & Sustainable Energy 2007; 26 (4): 338-348. doi: 10.1002/ep.10225
  • 18. Tan HW, Abdul ARA, Aroua MK. Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews 2013; 27: 118–127. doi: 10.1016/j.rser.2013.06.035
  • 19. Ilham Z, Saka S. Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate. Springer Plus 2016; 5 (923): 1-6. doi: 10.1186/s40064-016-2643-1
  • 20. Saka S, Isayama Y, Ilham Z, Jiayu X. New process for catalyst-free biodiesel production using subcritical acetic acid and supercritical methanol. Fuel 2010; 89 (7): 1442-1446. doi: 10.1016/j.fuel.2009.10.018
  • 21. De Matos CT, Garcia JC, Aurambout JP. Environmental Sustainability Assessment of Bioeconomy Products and Processes – Progress Report 1; European Commission; Luxembourg, Publications Office of the European Union, 2015.
  • 22. Marx S. Glycerol-free biodiesel production through transesterification: A review. Fuel Processing Technology 2016; 151: 139-147. doi: 10.1016/j.fuproc.2016.05.033
  • 23. Sahani S, Upadhyay SN, Sharma YC. Critical Review on Production of Glycerol Carbonate from Byproduct Glycerol through Transesterification. Industrial and Engineering Chemistry Research 2021; 60 (1): 67-88. doi: 10.1021/acs.iecr.0c05011
  • 24. Eaton SJ, Harakas GN, Kimball RW, Smith JA, Pilot KA et al. Formulation and combustion of glycerol-diesel fuel emulsions. Energy and Fuels. 2014; 28 (6): 3940-3947. doi: 10.1021/ef500670d
  • 25. AURI (2017). Patzer R. Stack Emissions Evaluation: Combustion of Crude Glycerin and Yellow Grease in an Industrial Fire Tube Boiler [online]. Webseite https://www.auri.org/wp-content/uploads/2020/01/Glycerin_Report_Final.pdf [accessed 20 October 2021].
  • 26. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD. From glycerol to value-added products. Angewandte Chemie - International Edition. 2007; 46 (24): 4434-4440. doi: 10.1002/anie.200604694
  • 27. Ilham Z, Saka S. Two-step supercritical dimethyl carbonate method for biodiesel production from Jatropha curcas oil. Bioresource Technology 2010; 101 (8): 2735-2740. doi: 10.1016/j.biortech.2009.10.053
  • 28. Szori M, Giri BR, Wang Z, Dawood AE, Viskolcz B et al. Glycerol carbonate as a fuel additive for a sustainable future. Sustainable Energy and Fuels 2018; 2 (10): 2171-2178. doi: 10.1039/c8se00207j
  • 29. Rahmat N, Abdullah AZ, Mohamed AR. Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review. Renewable and Sustainable Energy Reviews 2010; 14 (3): 987-1000. doi: 10.1016/j.rser.2009.11.010
  • 30. Awad O, Mamat R, Ibrahim T, Hammid A, Yusri IM et al. Overview of the oxygenated fuels in spark ignition engine: Environmental and performance. Renewable and Sustainable Energy Reviews 2018; 91 (3): 394-408. doi: 10.1016/j.rser.2018.03.107
  • 31. Dos Santos BAV. Process Intensification in the Synthesis of the Green Chemical Dimethyl Carbonate. PhD, Universidade do Porto, Portugal, 2014.
  • 32. Rounce P, Tsolakis A, Leung P, York APE. A comparison of diesel and biodiesel emissions using dimethyl carbonate as an oxygenated additive. Energy and Fuels 2010; 24 (9): 4812-4819. doi: 10.1021/ef100103z
  • 33. Sonnati MO, Amigoni S, De Givenchy TEP, Darmanin T, Choulet O et al. Glycerol carbonate as a versatile building block for tomorrow: Synthesis, reactivity, properties and applications. Green Chemistry. 2013; 15 (2): 283-306. doi: 10.1039/c2gc36525a
  • 34. Maximize Market Research - Glycerol Carbonate Market- Global Industry Analysis and Forecast (2021-2027) [online]. Website https:// www.transparencymarketresearch.com/arrhythmia-market.html [accessed January 11, 2022].
  • 35. Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Ramírez-López C, Maestro-Madurga B. Synthesis of glycerol 1,2-carbonate by transesterification of glycerol with dimethyl carbonate using triethylamine as a facile separable homogeneous catalyst. Green Chemistry 2012; 14 (12): 3368-3376. doi: 10.1039/c2gc35992h
  • 36. Huntsmann1 (2021). JEFFSOL Alkylene Carbonates [online]. Website https://webcache.googleusercontent.com/search?q=cache:jfsty 6J0tIkJ:https://pdf4pro.com/cdn/jeffsol-alkylene-carbonates-560688.pdf+&cd=2&hl=tr&ct=clnk&gl=tr [accessed January 11, 2022].
  • 37. Huntsmann2 (2021). JEFFSOL ® Glycerine Carbonate Technical Bulletin. [online]. Website https://pdf4pro.com/view/jeffsol-glycerine- carbonate-186f52.html. [accessed 8 October 2021.
  • 38. Hirotsu TK. Method for producing 4-hydromethyl-1,3-dioxolan-2-one. Japanese Patent 1999. JP2001172277A
  • 39. Tang Y, Xue YY, Li Z, Yan T, Zhou R et al. Heterogeneous synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by LiCl/CaO. Journal of Saudi Chemical Society 2019; 23 (4): 494-502. doi: 10.1016/j.jscs.2018.11.003
  • 40. Caro P, Bandres M, Urrutigoïty M, Cecutti C, Thiebaud-Roux S. Recent progress in synthesis of glycerol carbonate and evaluation of its plasticizing properties. Frontiers in Chemistry 2019; 7 (308): 1-13. doi: 10.3389/fchem.2019.00308
  • 41. Li J, Wang T. Chemical equilibrium of glycerol carbonate synthesis from glycerol. Journal of Chemical Thermodynamics 2011; 43 (5): 731-736. doi: 10.1016/j.jct.2010.12.013
  • 42. Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Maestro-Madurga B, Pesquera-Rodriguez A, Ramírez-López C et al. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization. Applied Catalysis A: General 2009; 366 (2): 315-324. doi: 10.1016/j.apcata.2009.07.020
  • 43. Franklin Strain. Carbonate-Haloformate of Glycerol and Method of Production Same. U.S. Patent 1948. US2446145. doi: 10.1038/209966a0
  • 44. Alvarez MG, Segarra AM, Contreras S, Sueiras JE, Medina F et al. Enhanced use of renewable resources: Transesterification of glycerol catalyzed by hydrotalcite-like compounds. Chemical Engineering Journal 2010; 161 (3): 340-345. doi: 10.1016/j.cej.2009.12.036
  • 45. Cho HJ, Kwon HM, Tharun J, Park DW. Synthesis of glycerol carbonate from ethylene carbonate and glycerol using immobilized ionic liquid catalysts. Journal of Industrial and Engineering Chemistry. 2010; 16 (5): 679-683. doi: 10.1016/j.jiec.2010.07.019
  • 46. Pan S, Zheng L, Nie R, Xia S, Chen P et al. Transesterification of glycerol with dimethyl carbonate to glycerol carbonate over Na-based zeolites. Chinese Journal of Catalysis 2012; 33 (11): 1772-1777. doi: 10.1016/s1872-2067(11)60450-6
  • 47. Wu Y, Song X, Zhang J, Li S, Yang X et al. Synthesis of glycerol carbonate from glycerol and diethyl carbonate over CeO2-CdO catalyst: The role of Ce4+ doped into CdO lattice. Journal of the Taiwan Institute of Chemical Engineers 2018; 87: 131-139. doi: 10.1016/j. jtice.2018.03.023
  • 48. Gutierrez-Lazaro A, Velasco D, Boldrini DE, Yustos P, Esteban J et al. Effect of operating variables and kinetics of the lipase catalyzed transesterification of ethylene carbonate and glycerol. Fermentation 2018; 4 (75): 1-14. doi: 10.3390/fermentation4030075
  • 49. Lanjekar K, Rathod VK. Utilization of glycerol for the production of glycerol carbonate through greener route, Journal of Environmental Chemical Engineering 2013; 1, 1231–1236. doi: 10.1016/j.jece.2013.09.015
  • 50. Nomanbhay S, Ong MY, Chew KW, Show PL, Lam MK et al. Organic carbonate production utilizing crude glycerol derived as by- product of biodiesel production: A review. Energies 2020; 13 (6). doi: 10.3390/en13061483
  • 51. Sarode-Dolas R. Manufacturing of Glycerol Carbonate in Aspen Plus. International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 2018; 8 (5): 39-61
  • 52. Rittiron P, Niamnuy C, Donphai W, Chareonpanich M, Seubsai A. Production of glycerol carbonate from glycerol over templated- sodium-aluminate catalysts prepared using a spray-drying method. ACS Omega 2019; 4 (5): 9001-9009. doi: 10.1021/acsomega.9b00805
  • 53. Fiorani G, Perosa A, Selva M. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables. Green Chemistry 2018; 20 (2): 288-322. doi: 10.1039/c7gc02118f
  • 54. Du Y, Gao J, Kong W, Zhou L, Ma L et al. Enzymatic Synthesis of Glycerol Carbonate Using a Lipase Immobilized on Magnetic Organosilica Nanoflowers as a Catalyst. ACS Omega. 2018; 3 (6): 6642-6650. doi: 10.1021/acsomega.8b00746
  • 55. Leão RAC, De Souza SP, Nogueira DO, Silva GMA, Silva MVM et al. Consecutive lipase immobilization and glycerol carbonate production under continuous-flow conditions. Catalysis Science and Technology. 2016; 6 (13): 4743-4748. doi: 10.1039/c6cy00295a
  • 56. Lee Y, Lee JH, Yang HJ, Jang M, Kim JR et al. Efficient and simultaneous cleaner production of biodiesel and glycerol carbonate in solvent-free system via statistical optimization. Journal of Cleaner Production. 2019; 218: 985-992. doi: 10.1016/j.jclepro.2019.01.331
  • 57. Kim SC, Kim YH, Lee H, Yoon DY, Song BK. Lipase-catalyzed synthesis of glycerol carbonate from renewable glycerol and dimethyl carbonate through transesterification. Journal of Molecular Catalysis B: Enzymatic. 2007; 49: 75-78. doi: 10.1016/j.molcatb.2007.08.007
  • 58. Waghmare, GV, Vetal, MD, Rathod, VK. Ultrasound assisted enzyme catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate, Ultrasonics Sonochemistry. 2015; 22 , 311–316. doi: 10.1016/j.ultsonch.2014.06.018
  • 59. Jung H, Lee Y, Kim D, Han SO, Kim SW et al. Enzymatic production of glycerol carbonate from by-product after biodiesel manufacturing process. Enzyme and Microbial Technology. 2012; 51: 143-147. doi: 10.1016/j.enzmictec.2012.05.004
  • 60. Tudorache M, Protesescu L, Coman S, Parvulescu VI. Efficient bio-conversion of glycerol to glycerol carbonate catalyzed by lipase extracted from Aspergillus niger. Green Chemistry. 2012; 14 (2): 478-482. doi: 10.1039/c2gc16294f
  • 61. Tudorache M, Negoi A, Parvulescu VI. Enhancement of the valorization of renewable glycerol: The effects of the surfactant-enzyme interaction on the biocatalytic synthesis of glycerol carbonate. Catalysis Today. 2017; 279: 71-76. doi: 10.1016/j.cattod.2016.02.038
  • 62. Tudorache M, Negoi A, Protesescu L, Coman SM. Bio-Glycerol as Sustainable Raw Material for Biorefinery-Biocatalytic Synthesis of Glycerol Carbonate. 21st European Biomass Conference and Exhibition Meeting; Bucharest, Romania; 2013. pp. 1-5.
  • 63. Pleiss J, Fischer M, Schmid RD. Anatomy of lipase binding sites: The scissile fatty acid binding site. Chemistry and Physics of Lipids 1998; 93 (1-2): 67-80. doi: 10.1016/S0009-3084(98)00030-9
  • 64. Gandhi N, Patil N, Sudhirprakash SJJ. Lipase-Catalyzed Esterification. Catalysis Reviews 2000; 42 (4): 439-480. Doi: 10.1081/ CR100101953
  • 65. Carrasco-López C, Godoy B, de las Rivas G, Fernández-Lorente JM, Palomo JM et al. Activation of bacterial thermo alkalophilic lipases is spurred by dramatic structural rearrangements. Journal of Biological Chemistry 2009; 284: 4365–4372. doi: 10.1074/jbc.M808268200
  • 66. Bommarius AS, Riebel BR. Biocatalysis. Weinheim, Germany: Wiley-VCH, 2004.
  • 67. Khan FI, Lan D. Durrani R. Huan W, Zhao Z et al. The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontiers in Bioengineering and Biotechnology. 2017; 5: 1–13. doi: 10.3389/fbioe.2017.00016
  • 68. Shuler ML, Kargi F. Bioprocess Engineering: Basic Concepts. New Jersey, USA: Prentice Hall PTR, 1992.
  • 69. Panadare DC, Rathod VK. Microwave assisted enzymatic synthesis of biodiesel with waste cooking oil and dimethyl carbonate. Journal of Molecular Catalysis B: Enzymatic 2016; 133: 518-524. doi: 10.1016/j.molcatb.2017.05.003
  • 70. Maruyama T, Nakajima M, Ichikawa S, Nabetani H, Furusaki S et al. Oil-water interfacial activation of lipase for interesterification of triglyceride and fatty acid, JAOCS, Journal of the American Oil Chemists Society 2000; 77: 1121–1126. doi: 10.1007/s11746-000-0176-4
  • 71. Castillo E, Casas-Godoy L, Sandoval G. Medium-engineering: a useful tool for modulating lipase activity and selectivity. Biocatalysis 2016; 1: 178-188. doi: 10.1515/boca-2015-0013
  • 72. Vitolo M. Brief Review on Enzyme Activity. World Journal of Pharmaceutical Research 2020; 9 (2): 60-79. doi: 10.20959/wjpr20202-16660
  • 73. Go AR, Lee Y, Kim YH, Park S, Choi J et al. Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil in solvent-free system. Enzyme and Microbial Technology 2013; 53 (3): 154-158. doi: 10.1016/j.enzmictec.2013.02.016
  • 74. Lee KH, Park CH, Lee EY. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent. Bioprocess and Biosystems Engineering 2010; 33 (9): 1059-1065. doi: 10.1007/s00449-010-0431-9
  • 75. Ferreira AGM, Egas APV, Fonseca IMA, Costa AC, Abreu DC et al. The viscosity of glycerol, Journal of Chemical Thermodynamics 2017; 113: 162–182. doi: 10.1016/j.jct.2017.05.042
  • 76. Sivaramakrishnan R, Incharoensakdi A. Direct transesterification of Botryococcus sp. catalysed by immobilized lipase: Ultrasound treatment can reduce reaction time with high yield of methyl ester. Fuel 2017; 191: 363–370. doi: 10.1016/j.fuel.2016.11.085
  • 77. Halim SFA, Kamaruddin AH, Fernando WJN. Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: Optimization using response surface methodology (RSM) and mass transfer studies. Bioresource Technology 2009; 100 (2): 710-716. doi: 10.1016/j.biortech.2008.07.031
  • 78. Soumanou MM, Bornscheuer UT. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme and Microbial Technology 2003; 33 (1): 97-103. doi: 10.1016/S0141-0229(03)00090-5
  • 79. Dossat V, Combes D, Marty A. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: Influence of the glycerol production. Enzyme and Microbial Technology 1999; 25 (3-5): 194-200. doi: 10.1016/S0141-0229(99)00026-5
  • 80. Du W, Li W, Sun T, Chen X, Liu D. Perspectives for biotechnological production of biodiesel and impacts. Applied Microbiology and Biotechnology 2008; 79 (3): 331-337. doi: 10.1007/s00253-008-1448-8
  • 81. Tudorache M, Protesescu L, Negoi A, Parvulescu VI. Recyclable biocatalytic composites of lipase-linked magnetic macro-/nano-particles for glycerol carbonate synthesis. Applied Catalysis A: General 2012; 437-438: 90-95. doi: 10.1016/j.apcata.2012.06.016
  • 82. Tudorache M, Negoi A, Tudora B, Parvulescu VI. Environmental-friendly strategy for biocatalytic conversion of waste glycerol to glycerol carbonate. Applied Catalysis B: Environmental 2014; 146: 274-278. doi: 10.1016/j.apcatb.2013.02.049
  • 83. Calero J, Luna D, Sancho ED, Luna C, Bautista FM et al. An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines. Renewable and Sustainable Energy Reviews 2015; 42: 1437-1452. doi: 10.1016/j.rser.2014.11.007
  • 84. Seong PJ, Jeon BW, Lee M, Cho DH, Kim D et al. Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil and dimethyl carbonate. Enzyme and Microbial Technology 2011; 48 (6-7): 505-509. doi: 10.1016/j.enzmictec.2011.02.009
  • 85. Schlagermann P, Göttlicher G, Dillschneider R, Rosello-Sastre R, Posten C. Composition of algal oil and its potential as biofuel. Journal of Combustion 2012; 2012: 1-14. doi: 10.1155/2012/285185
  • 86. Jo YJ., Lee OK, Lee EY. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass. Bioresource Technology 2014; 158: 105– 110. doi: 10.1016/j.biortech.2014.01.141
  • 87. Miao C, Wang Z, Yang L, Li H, Lv P, Zuhau X et al. Lipase-Catalyzed Synthesis of Glycerol-Free Biodiesel from Rapeseed Oil and Dimethyl Carbonate. Journal of Biobased Materials and Bioenergy. 2020; 14 (4): 537-543. doi: 10.1166/jbmb.2020.1973
  • 88. Wang H, Lu P. Liquid-liquid equilibria for the system dimethyl carbonate + methanol + glycerol in the temperature range of (303.15 to 333.15) K. Journal of Chemical and Engineering Data 2012; 57 (2): 582-589. doi: 10.1021/je201036h
  • 89. Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC et al. Novozym 435 the “perfect” lipase immobilized? Catalysis Science & Technology 2019; 9: 2380-2420. doi: 10.1039/c9cy00415g
  • 90. Cushing KA, Peretti SW. Enzymatic processing of renewable glycerol into value-added glycerol carbonate. RSC Advances 2013; 3 (40): 18596-18604. doi: 10.1039/c3ra43811b
  • 91. Lee Y, Lee JH, Yang HJ, Jang M, Kim JR et al. Efficient simultaneous production of biodiesel and glycerol carbonate via statistical optimization. Journal of Industrial and Engineering Chemistry 2017; 51: 49–53. doi: 10.1016/j.jiec.2017.03.010
  • 92. Unugul T, Kutluk T, Kutluk BG, Kapucu N. Environmentally Friendly Processes from Coffee Wastes to Trimethylolpropane Esters to be Considered Biolubricants, Journal of the Air and Waste Management Association 2020; 70: 1198–1215. doi: 10.1080/10962247.2020.1788664
  • 93. Jaeger KE, Eggert T. Lipases for biotechnology, Current Opinion in Biotechnology 2002, 13: 390–397. doi: 10.1016/S0958-1669(02)00341- 5
  • 94. Kim KH, Lee EY. Simultaneous production of transformer insulating oil and value-added glycerol carbonates from soybean oil by lipase- catalyzed transesterification in dimethyl carbonate. Energies 2018; 11 (1): 82-93. doi: 10.3390/en11010082
  • 95. Robinson PK. Enzymes: principles and biotechnological applications. Essays in Biochemistry 2015; 59: 1-41. doi: 10.1042/BSE0590001
  • 96. Gharat N, Rathod VK. Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Ultrasonics Sonochemistry 2013; 20 (3): 900-905. doi: 10.1016/j.ultsonch.2012.10.011
  • 97. Chapman J, Ismail AE, Dinu CZ. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018; 8 (6): 20-29. doi: 10.3390/catal8060238
  • 98. Gao J, Wang Y, Du Y, Zhou L, He Y et al. Construction of biocatalytic colloidosome using lipase-containing dendritic mesoporous silica nanospheres for enhanced enzyme catalysis. Chemical Engineering Journal 2017; 317: 175–186. doi: 10.1016/j.cej.2017.02.012
  • 99. Castro JH, Ruiz-Colorado A. Kinetic model for FAME production using immobilized lipases in a solvent-free system, CT& F - Ciencia Tecnologia y Futuro. 2019; 9 (2): 99–108. doi: 10.29047/01225383.129
  • 100. De Souza SP, de Almeida RAD, Garcia GG, Leão RAC, Bassut J et al. Immobilization of lipase B from Candida antarctica on epoxy- functionalized silica: characterization and improving biocatalytic parameters. Journal of Chemical Technology and Biotechnology 2018; 93: 105–111. doi: 10.1002/jctb.5327
  • 101. Santana J, de Oliveira J, Carhalvo N, De Melo N, Osório NSM et al. Analysis of the Performance of a Packed Bed Reactor To Production Ethyl Esters. Química Nova 2018; 41 (00): 891-898. doi: 10.21577/0100-4042.20170261
  • 102. Itabaiana I, Leal I, Ivana, CR, Miranda LSM, de Souza ROM. Three-step chemo enzymatic continuous-flow cascade synthesis of 1-monoacylglycerol. Journal of Flow Chemistry 2013; 3 (4): 122-126. doi: 10.1556/JFC-D-13-00019
  • 103. Chang SW, Shaw JF, Yang CK, Shieh CJ. Optimal continuous biosynthesis of hexyl laurate by a packed bed bioreactor. Process Biochemistry 2007; 42 (9): 1362-1366. doi: 10.1016/j.procbio.2007.06.008
  • 104. Laudani CG, Habulin M, Knez Ž, Porta GD, Reverchon E. Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: bench-scale packed-bed reactor study. Journal of Supercritical Fluids 2007; 41 (1): 74-81. doi: 10.1016/j.supflu.2006.08.017
  • 105. Vaziri RS, Babler MU. Removal of hydrogen sulfide with metal oxides in packed bed reactors-A review from a modeling perspective with practical implications. Applied Sciences 2019; 9 (24): 5316-5330. doi: 10.3390/app9245316
  • 106. Roig MG, Bello JF, Fernando G, Celis CDDE, Juan M. Biotechnology and applied biology section applications of immobilized enzymes. Biochemical Education 1987; 15: 1–11. doi: 10.1016/0307-4412(87)90011-2
  • 107. Lai OM, Low CT, Akoh CC. Lipase-catalyzed acidolysis of palm olein and caprylic acid in a continuous bench-scale packed bed bioreactor. Food Chemistry 2005; 92 (3): 527-533. doi: 10.1016/j.foodchem.2004.08.028
  • 108. Grosová Z, Rosenberg M, Rebroš M. Perspectives and applications of immobilised β-galactosidase in food industry - A review. Czech Journal of Food Sciences 2008; 26: 1–14. doi: 10.17221/1134-cjfs
  • 109. Nascimento MA, Gotardo LE, Leão RAC, De Castro AM, De Souza ROM et al. Enhanced Productivity in Glycerol Carbonate Synthesis under Continuous Flow Conditions: Combination of Immobilized Lipases from Porcine Pancreas and Candida antarctica (CALB) on Epoxy Resins. ACS Omega 2019; 4 (1): 860-869. doi: 10.1021/acsomega.8b02420
  • 110. Ceni GGT, Silva P, Oliveira J, Vladimir J. Ultrasound-assisted enzymatic transesterification of methyl benzoate and glycerol to 1-glyceryl benzoate in organic solvent, Enzyme and Microbial Technology 2011; 48: 169–174. doi: 10.1016/j.enzmictec.2010.10.004
  • 111. Yachmenev VG, Blanchard, EJ, Lambert, AH. Use of ultrasonic energy for intensification of the bio preparation of greige cotton. Ultrasonics 2004; 42: 87–91. doi: 10.1016/j.ultras.2004.01.011
  • 112. Bayramoglu M, Korkut I, Ergan BT. Reusability and regeneration of solid catalysts used in ultrasound assisted biodiesel production, Turkish Journal of Chemistry 2021; 45: 342–347. doi: 10.3906/kim-2008-3
  • 113. Guldhe A, Singh B, Mutanda T, Permaul K, Bux F. Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renewable and Sustainable Energy Reviews 2015; 41: 1447-1464. doi: 10.1016/j.rser.2014.09.035
  • 114. Tudorache M, Ghemes G, Nae A, Matei E, Mercioniu I et al. Biocatalytic designs for the conversion of renewable glycerol into glycerol carbonate as a value-added product, Central European Journal of Chemistry 2014; 12: 1262–1270. doi: 10.2478/s11532-014-0547-x
  • 115. Cavalcante FT, Neto FS, Falcão IRA, da Silva Souza JE, de Moura Junior LS et al. Opportunities for improving biodiesel production via lipase catalysis. Fuel 2021; 288 (119577): 1-20. doi: 10.1016/j.fuel.2020.119577
  • 116. Min JY, Lee EY. Lipase-catalyzed simultaneous biosynthesis of biodiesel and glycerol carbonate from corn oil in dimethyl carbonate. Biotechnology Letters 2011; 33 (9): 1789-1796. doi: 10.1007/s10529-011-0627-3
  • 117. Menaa B, Herrero M, Rives V, Lavrenko M, Eggers DK. Favorable Influence of Hydrophobic Surfaces on Protein Structure in Porous Organically-modified Silica Glasses. Biomaterials. 2008; 29 (18): 2710-2718. doi: 10.1016/j.biomaterials.2008.02.026
  • 118. Tudorache M, Negoi A, Protesescu L, Parvulescu VI. Biocatalytic alternative for bio-glycerol conversion with alkyl carbonates via a lipase-linked magnetic nano-particles assisted process. Applied Catalysis B: Environmental 2014; 145: 120-125. doi: 10.1016/j. apcatb.2012.12.033
  • 119. Sonare NR, Rathod VK. Transesterification of used sunflower oil using immobilized enzyme, Journal of Molecular Catalysis B: Enzymatic. 2010; 66: 142–147. doi: 10.1016/j.molcatb.2010.04.009
  • 120. Tudorache M, Nae A, Coman S, Parvulescu VI. Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol carbonate. RSC Advances 2013; 3: 4052–4058. doi: 10.1039/c3ra23222k
APA Aydoğdu S, Kapucu N (2022). A review on the achievement of enzymatic glycerol carbonate production. , 1376 - 1396. 10.55730/1300-0527.3445
Chicago Aydoğdu Selda,Kapucu Nurcan A review on the achievement of enzymatic glycerol carbonate production. (2022): 1376 - 1396. 10.55730/1300-0527.3445
MLA Aydoğdu Selda,Kapucu Nurcan A review on the achievement of enzymatic glycerol carbonate production. , 2022, ss.1376 - 1396. 10.55730/1300-0527.3445
AMA Aydoğdu S,Kapucu N A review on the achievement of enzymatic glycerol carbonate production. . 2022; 1376 - 1396. 10.55730/1300-0527.3445
Vancouver Aydoğdu S,Kapucu N A review on the achievement of enzymatic glycerol carbonate production. . 2022; 1376 - 1396. 10.55730/1300-0527.3445
IEEE Aydoğdu S,Kapucu N "A review on the achievement of enzymatic glycerol carbonate production." , ss.1376 - 1396, 2022. 10.55730/1300-0527.3445
ISNAD Aydoğdu, Selda - Kapucu, Nurcan. "A review on the achievement of enzymatic glycerol carbonate production". (2022), 1376-1396. https://doi.org/10.55730/1300-0527.3445
APA Aydoğdu S, Kapucu N (2022). A review on the achievement of enzymatic glycerol carbonate production. Turkish Journal of Chemistry, 46(5), 1376 - 1396. 10.55730/1300-0527.3445
Chicago Aydoğdu Selda,Kapucu Nurcan A review on the achievement of enzymatic glycerol carbonate production. Turkish Journal of Chemistry 46, no.5 (2022): 1376 - 1396. 10.55730/1300-0527.3445
MLA Aydoğdu Selda,Kapucu Nurcan A review on the achievement of enzymatic glycerol carbonate production. Turkish Journal of Chemistry, vol.46, no.5, 2022, ss.1376 - 1396. 10.55730/1300-0527.3445
AMA Aydoğdu S,Kapucu N A review on the achievement of enzymatic glycerol carbonate production. Turkish Journal of Chemistry. 2022; 46(5): 1376 - 1396. 10.55730/1300-0527.3445
Vancouver Aydoğdu S,Kapucu N A review on the achievement of enzymatic glycerol carbonate production. Turkish Journal of Chemistry. 2022; 46(5): 1376 - 1396. 10.55730/1300-0527.3445
IEEE Aydoğdu S,Kapucu N "A review on the achievement of enzymatic glycerol carbonate production." Turkish Journal of Chemistry, 46, ss.1376 - 1396, 2022. 10.55730/1300-0527.3445
ISNAD Aydoğdu, Selda - Kapucu, Nurcan. "A review on the achievement of enzymatic glycerol carbonate production". Turkish Journal of Chemistry 46/5 (2022), 1376-1396. https://doi.org/10.55730/1300-0527.3445