Yıl: 2022 Cilt: 46 Sayı: 5 Sayfa Aralığı: 1417 - 1428 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3448 İndeks Tarihi: 06-12-2022

The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris

Öz:
In the present study, Ag nanoparticles (AgNPs) were synthesized from Salvia officinalis and Thymus vulgaris, known as phytotherapy plants. The obtained silver nanoparticles were characterized using SEM, XRD, FTIR, and UV/Vis spectra. The antioxidant capacities of Salvia officinalis-mediated AgNP (SO-AgNP) and Thymus vulgaris-mediated AgNP (TV-AgNP) were analyzed in vitro using 1,1-diphenyl-2-picrylhydrazyl and iron chelating activity assays. DPPH activities were 83.74% and 57.17% for SO-AgNP and TV-AgNP at concentration 200 mg/L, respectively. Both green synthesized AgNPs exhibited good iron chelating activity. In addition, the DNA cleavage activities of SO-AgNPs and TV-AgNP were investigated with agarose gel electrophoresis technique. SO-AgNPs and TV-AgNP showed single-strand DNA cleavage activity. AgNPs showed that the SO-AgNP and TV-AgNp were effective against bacteria and fungi, and antimicrobic activities were assessed as minimal inhibition concentration (MIC). Remarkably, green synthesized AgNPs showed highly effective cell viability and biofilm inhibition effect. AgNPs also demonstrated slightly antimicrobial photodynamic activity after LED irradiation.
Anahtar Kelime: Green synthesized AgNPs Salvia officinalis Thymus vulgaris biological properties

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advance Research 2016; 7 (1): 17–28. doi: 10.1016/j.jare.2015.02.007
  • 2. El-Gendy A, Samir A, Ahmed E, Enwemeka CS, Mohamed T. The antimicrobial effect of 400 nm femtosecond laser and silver nanoparticles on gram-positive and gram-negative bacteria. Journal of Photochemistry and Photobiology B: Biology 2021; 223: 112300. doi: 10.1016/j. jphotobiol.2021.112300
  • 3. Jemilugba OT, Sakho EM, Parani S, Mavumengwana V, Oluwafemi OS. Green synthesis of silver nanoparticles using Combretum erythrophyllum leaves and its antibacterial activities. Colloid and Interface Science 2019; 31: 100191. doi: 10.1016/j.colcom.2019.100191
  • 4. Alexander JW. History of the medical use of silver. Surgical Infection 2009; 10 (3): 289–292. doi: 10.1089/sur.2008.9941
  • 5. Rahmaniyan F, Shamel A, Shafaghat A. Evaluation of biologically synthesized silver nanoparticles by the bioreduction method. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2015; 45:10: 1495-1500, doi: 10.1080/15533174.2013.862829
  • 6. Shafaghat A. Synthesis and characterization of silver nanoparticles by phytosynthesis method and their biological activity. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2015; 45: 3: 381-387. doi: 10.1080/15533174.2013.819900
  • 7. Raoufi S, Shafaghat A. Comparative study of antibacterial activity of nanosilver Syntsesized using trigonosciadium brachytaenium (Boiss.) alava leaves extract, alone and mixed with gentamicin. Jundishapur Journal of Natural Pharmaceutical Products 2018; 13 (3): e57241. doi: 10.5812/jjnpp.57241
  • 8. Shafaghat A, Shafaghatlonbar M. Nanophytosynthesis and characterization of silver nano particles using chrysanthemum parthenium extract as an eco-friendly method. Journal of Chemical Health Risks. 2018; 8 (1): 85-94.
  • 9. Kaur G, Singh SK, Kumar R, Kumar B, Kumari Y et al. Development of modified apple polysaccharide capped silver nanoparticles loaded with mesalamine for effective treatment of ulcerative colitis. Journal of Drug Delivery Science and Technology 2020; 60: 1-10. doi: 10.1016/j.jddst.2020.101980
  • 10. Pletzer D, Asnis J, Slavin YN, Hancock REW, Bach H et al. Rapid microwave-based method for the preparation of antimicrobial lignin- capped silver nanoparticles active against multidrug-resistant bacteria. International Journal of Pharmaceutics 2021; 596: 120299. dio: 10.1016/j.ijpharm.2021.120299
  • 11. Li C, Chen D, Xiao H. Green synthesis of silver nanoparticles using Pyrus betulifolia bunge and their antibacterial and antioxidant activity. Materials Today Communications 2021; 26: 102108. doi: 10.1016/j.mtcomm.2021.102108
  • 12. Saygi KO, Cacan E. Antioxidant and cytotoxic activities of silver nanoparticles synthesized using Tilia cordata flowers extract. Materials Today Communications 2021; 27: 102316. doi: 10.1016/j.mtcomm.2021.102316
  • 13. Zhang C, Hu Z, Deng B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Research 2016; 88: 403–427. doi: 10.1016/j.watres.2015.10.025
  • 14. Manikandan DB, Sridhar A, Sekar RK, Perumalsamy B, Veeran S et al. Green fabrication, characterization of silver nanoparticles using aqueous leaf extract of Ocimum americanum (Hoary Basil) and investigation of its in vitro antibacterial, antioxidant, anticancer and photocatalytic reduction. Journal of Environmental Chemical Engineering 2021; 9: 104845. doi: 10.1016/j.jece.2020.104845
  • 15. Lara HH, Ixtepan-Turrent L, Jose Yacaman M, Lopez-Ribot J. Inhibition of Candida auris biofilm formation on medical and environmental surfaces by silver nanoparticles. ACS Applied Materials & Interfaces 2020; 12 (19): 21183–91. doi: 10.1021/acsami.9b20708
  • 16. Govindappa M, Tejashree S, Thanuja V, Hemashekhar B, Srinivas C et al. Pomegranate fruit fleshy pericarp mediated silver nanoparticles possessing antimicrobial, antibiofilm formation, antioxidant, biocompatibility and anticancer activity. Journal of Drug Delivery Science and Technology 2021; 61: 102289. doi: 10.1016/j.jddst.2020.102289
  • 17. Ramar M, Manikandan B, Raman T, Arunagirinathan K, Prabhu NM et al. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 2015; 138: 120–129. doi: 10.1016/j.saa.2014.10.043
  • 18. Tajdidzadeh M, Azmi BZ, Yunus WMM, Talib ZA, Safrolhosseini A R et al. Synthesis of Silver Nanoparticles Dispersed in Various Aqueous Media Using Laser Ablation. The Scientific World Journal 2014; Article ID: 324921, 7p. doi: 10.1155/2014/324921
  • 19. Agırtaş M S, Karatas C, Özdemir S. Synthesis of some metallophthalocyanines with dimethyl 5- (phenoxy) -isophthalate substituents and evaluation of their antioxidant-antibacterial activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015; 135: 20–24. doi: 10.1016/j.saa.2014.06.139
  • 20. Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics 1994; 315: 161-169. doi: 10.1006/ abbi.1994.1485
  • 21. Sastry M, Mayyaa KS, Bandyopadhyay K. pH Dependent Changes in the Optical Properties of Carboxylic Acid Derivatized Silver Colloid Particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1997; 127: 221-228. doi: 10.1016/S0927-7757(97)00087-3
  • 22. Sudha A, Jeyakanthan J, Srinivasan P. Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resource-Efficient Technologies 2017; 3: 506-515. doi: 10.1016/j.reffit.2017.07.002
  • 23. Yarrappagaari S, Gutha R, Narayanaswamy L, Thopireddy L, Benne L et al. Eco-friendly synthesis of silver nanoparticles from the whole plant of Cleome viscosa and evaluation of their characterization, antibacterial, antioxidant and antidiabetic properties. Saudi Journal of Biological Sciences 2020; 27 (12): 3601–3614. doi: 10.1016/j.sjbs.2020.07.034
  • 24. Badmus JA, Oyemomi S A, Adedosu OT, Yekeen TA, Azeez MA et al. Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon 2020; e05413. doi: 10.1016/j.heliyon.2020
  • 25. Kumar V, Bano D, Mohan S, Singh DK, Hasan SH. Sunlight-induced green synthesis of silver nanoparticles using aqueous leaf extract of Polyalthia longifolia and its antioxidant activity. Materials Letters 2016; 181: 371–377. doi: 10.1016/j.matlet.2016.05.097
  • 26. Ravichandran V, Vasanthi S, Shalini S, Ali Shah SA, Harish R. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters 2016; 180: 264–267. doi: 10.1016/j.matlet.2016.05.172
  • 27. Kumar V, Singh S, Srivastava B, Bhadouria R, Singh R. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. Journal of Environmental Chemical Engineering 2019; 7 (3): 103094. doi: 10.1016/j.jece.2019.103094
  • 28. Lehman KM, Grabowicz M. Countering gram-negative antibiotic resistance: Recent progress in disrupting the outer membrane with novel therapeutics. Antibiotics 2019; 8 (4): 163. doi: 10.3390/antibiotics8040163
  • 29. Thi Lan Huong V, Nguyen NT. Green synthesis, characterization and antibacterial activity of silver nanoparticles using Sapindus mukorossi fruit pericarp extract. Materials Today: Proceedings. 2021; 42: 88–93. doi: 10.1016/j.matpr.2020.10.015
  • 30. Murugesan AK, Pannerselvam B, Javee A, Rajenderan M, Thiyagarajan D. Facile green synthesis and characterization of Gloriosa superba L. tuber extract-capped silver nanoparticles (GST-AgNPs) and its potential antibacterial and anticancer activities against A549 human cancer cells. Environmental Nanotechnology, Monitoring and Management 2021; 15: 100460. doi: 10.1016/j.enmm.2021.100460
  • 31. Anju TR, Parvathy S, Veettil MV, Rosemary J, Ansalna TH et al. Green synthesis of silver nanoparticles from Aloe vera leaf extract and its antimicrobial activity. Materials Today: Proceedings 2021; 43: 3956-3960. doi: 10.1016/j.matpr.2021.02.665
  • 32. Subramanian P, Ravichandran A, Manoharan V, Muthukaruppan R, Somasundaram S et al. Synthesis of Oldenlandia umbellata stabilized silver nanoparticles and their antioxidant effect, antibacterial activity, and bio-compatibility using human lung fibroblast cell line WI-38. Process Biochemistry 2019; 86: 196–204. doi: 10.1016/j.procbio.2019.08.002 PRBI 1172
  • 33. Kumar V, Singh DK, Mohan S, Gundampati RK, Hasan SH. Photo induced green synthesis of silver nanoparticles using aqueous extract of Physalis angulata and its antibacterial and antioxidant activity. Journal of Environmental Chemical Engineering 2017: 5(1): 744–756. doi: 10.1016/j.jece.2016.12.055
  • 34. Aygün A, Özdemir S, Gülcan M, Cellat K, Şen F. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. Journal of Pharmaceutical and Biomedical Analysis 2020; 178: 112970. doi: 10.1016/j. jpba.2019.112970
  • 35. Shah S, Gaikwad S, Nagar S, Kulshrestha S, Vaidya V et al. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticlesagainstthenosocomialpathogenPseudomonasaeruginosa.Biofouling.2019;35(1):34–49.doi: 10.1080/08927014.2018.1563686
  • 36. Malá Z, Žárská L, Bajgar R, Bogdanová K, Kolář M et al. The application of antimicrobial photodynamic inactivation on methicillin- resistant S. aureus and ESBL-producing K. pneumoniae using porphyrin photosensitizer in combination with silver nanoparticles. Photodiagnosis and Photodynamic Therapy 2021; 33: 102140. doi: 10.1016/j.pdpdt.2020.102140
  • 37. Srinivasan R, Vigneshwari L, Rajavel T, Durgadevi R, Kannappan A et al. Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Environmental Science and Pollution Research 2018; 25 (11): 10538–10554. doi: 10.1007/s11356-017-1049-0
  • 38. Porter GC, Tompkins GR, Schwass DR, Li KC, Waddell JN et al. Anti-biofilm activity of silver nanoparticle-containing glass ionomer cements. Dental Materials 2020; 36 (8): 1096–107. doi: 10.1016/j.dental.2020.05.001
  • 39. Joshi AS, Singh P, Mijakovic I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. International Journal of Molecular Sciences 2020; 21 (20): 1–24. doi: 10.3390/ijms21207658
APA ÖDEMİŞ Ö, ozdemir s, Gonca S, Arslantas A, AGIRTAS M (2022). The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. , 1417 - 1428. 10.55730/1300-0527.3448
Chicago ÖDEMİŞ Ömer,ozdemir sadin,Gonca Serpil,Arslantas Ali,AGIRTAS MEHMET SALIH The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. (2022): 1417 - 1428. 10.55730/1300-0527.3448
MLA ÖDEMİŞ Ömer,ozdemir sadin,Gonca Serpil,Arslantas Ali,AGIRTAS MEHMET SALIH The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. , 2022, ss.1417 - 1428. 10.55730/1300-0527.3448
AMA ÖDEMİŞ Ö,ozdemir s,Gonca S,Arslantas A,AGIRTAS M The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. . 2022; 1417 - 1428. 10.55730/1300-0527.3448
Vancouver ÖDEMİŞ Ö,ozdemir s,Gonca S,Arslantas A,AGIRTAS M The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. . 2022; 1417 - 1428. 10.55730/1300-0527.3448
IEEE ÖDEMİŞ Ö,ozdemir s,Gonca S,Arslantas A,AGIRTAS M "The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris." , ss.1417 - 1428, 2022. 10.55730/1300-0527.3448
ISNAD ÖDEMİŞ, Ömer vd. "The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris". (2022), 1417-1428. https://doi.org/10.55730/1300-0527.3448
APA ÖDEMİŞ Ö, ozdemir s, Gonca S, Arslantas A, AGIRTAS M (2022). The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. Turkish Journal of Chemistry, 46(5), 1417 - 1428. 10.55730/1300-0527.3448
Chicago ÖDEMİŞ Ömer,ozdemir sadin,Gonca Serpil,Arslantas Ali,AGIRTAS MEHMET SALIH The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. Turkish Journal of Chemistry 46, no.5 (2022): 1417 - 1428. 10.55730/1300-0527.3448
MLA ÖDEMİŞ Ömer,ozdemir sadin,Gonca Serpil,Arslantas Ali,AGIRTAS MEHMET SALIH The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. Turkish Journal of Chemistry, vol.46, no.5, 2022, ss.1417 - 1428. 10.55730/1300-0527.3448
AMA ÖDEMİŞ Ö,ozdemir s,Gonca S,Arslantas A,AGIRTAS M The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. Turkish Journal of Chemistry. 2022; 46(5): 1417 - 1428. 10.55730/1300-0527.3448
Vancouver ÖDEMİŞ Ö,ozdemir s,Gonca S,Arslantas A,AGIRTAS M The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. Turkish Journal of Chemistry. 2022; 46(5): 1417 - 1428. 10.55730/1300-0527.3448
IEEE ÖDEMİŞ Ö,ozdemir s,Gonca S,Arslantas A,AGIRTAS M "The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris." Turkish Journal of Chemistry, 46, ss.1417 - 1428, 2022. 10.55730/1300-0527.3448
ISNAD ÖDEMİŞ, Ömer vd. "The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris". Turkish Journal of Chemistry 46/5 (2022), 1417-1428. https://doi.org/10.55730/1300-0527.3448