Yıl: 2022 Cilt: 46 Sayı: 5 Sayfa Aralığı: 1620 - 1631 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3465 İndeks Tarihi: 07-12-2022

Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system

Öz:
The influence of discharge rate, ambient temperature, and phase change material on the maximum temperature and the highest temperature difference was investigated. The maximum temperature of the battery was tested with and without phase change material under extreme discharge rates (4C and 5C) and ambient temperatures (310 K and 320 K). Results showed that a phase change material reduced the maximum temperature from 327.94 K to 306.45 K for a 14.6 Ah lithium-ion battery discharged at 5C-rate and 320 K. Quantitatively determined parameter effects revealed that the PCM parameter considerably had a remarkable influence on maximum temperature compared to discharge rate and ambient temperature. Moreover, the influence of ambient temperature on the maximum temperature was approximately 2.5 times greater than the C-rate, while the influence of ambient temperature on the highest temperature difference was approximately 50 times greater than the C-rate. The quantified parameter effects can be used to improve the phase change material-battery cooling system.
Anahtar Kelime: Battery thermal model lithium-ion battery phase change material Taguchi design

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Yao M, Gan Y, Liang J, Dong D, Ma L et al. Performance simulation of a heat pipe and refrigerant-based lithium-ion battery thermal management system coupled with electric vehicle air-conditioning. Applied Thermal Engineering 2021; 191: 116878. https://doi. org/10.1016/j.applthermaleng.2021.116878
  • 2. Yang F, Wang D, Zhao Y, Tsui KL, Bae SJ. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries. Energy 2018; 145: 486-495. https://doi.org/10.1016/j.energy.2017.12.144
  • 3. Chen X, Zhou F, Yang W, Gui Y, Zhang Y. A hybrid thermal management system with liquid cooling and composite phase change materials containing various expanded graphite contents for cylindrical lithium-ion batteries. Applied Thermal Engineering 2022; 200: 117702. https://doi.org/10.1016/j.applthermaleng.2021.117702
  • 4. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019; 575: 75-86. https://doi.org/10.1038/s41586-019-1682-5
  • 5. Zheng N, Fan R, Sun Z, Zhou T. Thermal management performance of a fin enhanced phase change material system for the lithium ion battery. International Journal of Energy Research 2020; 44: 7617-7629. https://doi.org/10.1002/er.5494
  • 6. Kannan V, Fisher A, Birgersson E. Monte Carlo assisted sensitivity analysis of a Li-ion battery with a phase change material. Journal of Energy Storage 2021; 35: 102269. https://doi.org/10.1016/j.est.2021.102269
  • 7. Jiang Z, Qu ZG. Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study. Applied Energy 2019; 242: 378-392. https://doi.org/10.1016/j.apenergy.2019.03.043
  • 8. Hou J, Yang M, Wang D, Zhang J. Fundamentals and challenges of lithium ion batteries at temperatures between− 40 and 60°C. Advanced Energy Materials 2020; 10 (18): 1904152. https://doi.org/10.1002/aenm.201904152
  • 9. Lindgren J, Lund PD. Effect of extreme temperatures on battery charging and performance of electric vehicles. Journal of Power Sources 2016; 328: 37-45. https://doi.org/10.1016/j.jpowsour.2016.07.038
  • 10. Lu Z, Yu X, Wei L, Cao F, Zhang L et al. A comprehensive experimental study on temperature-dependent performance of lithium-ion battery. Applied Thermal Engineering 2019; 158: 113800. https://doi.org/10.1016/j.applthermaleng.2019.113800
  • 11. Choudhari V, Dhoble A, Panchal S, Fowler M, Fraser, R. Numerical investigation on thermal behaviour of 5×5 cell configured battery pack using phase change material and fin structure layout. Journal of Energy Storage 2021; 43: 103234. https://doi.org/10.1016/j.est.2021.103234
  • 12. Jilte R, Afzal A, Panchal S. A novel battery thermal management system using nano-enhanced phase change materials. Energy 2021; 219: 119564. https://doi.org/10.1016/j.energy.2020.119564
  • 13. Choudhari VG, Dhoble AS, Panchal S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. International Journal of Heat and Mass Transfer 2020; 163: 120434. https://doi.org/10.1016/j. ijheatmasstransfer.2020.120434
  • 14. An Z, Chen X, Zhao L, Gao Z. Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling. Applied Thermal Engineering 2019; 163: 114345. https://doi.org/10.1016/j. applthermaleng.2019.114345
  • 15. Lamrani B, Lebrouhi BE, Khattari Y, Kousksou T. A simplified thermal model for a lithium-ion battery pack with phase change material thermal management system. Journal of Energy Storage 2021; 44: 103377. https://doi.org/10.1016/j.est.2021.103377
  • 16. Javani N, Dincer I, Naterer GF, Yilbas BS. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. International Journal of Heat and Mass Transfer 2014; 72: 690-703. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.076
  • 17. Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fraser R et al. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Applied Thermal Engineering 2017; 122: 80-90. https://doi.org/10.1016/j.applthermaleng.2017.05.010
  • 18. Mevawalla A, Panchal S, Tran MK, Fowler M, Fraser R. Mathematical heat transfer modeling and experimental validation of lithium-ion battery considering: tab and surface temperature, separator, electrolyte resistance, anode-cathode irreversible and reversible heat. Batteries 2020; 6 (4): 61. https://doi.org/10.3390/batteries6040061
  • 19. Zhang H, Li C, Zhang R, Lin Y, Fang H. Thermal analysis of a 6s4p Lithium-ion battery pack cooled by cold plates based on a multi-domain modeling framework. Applied Thermal Engineering 2020; 173: 115216. https://doi.org/10.1016/j.applthermaleng.2020.115216
  • 20. Chitta SD, Akkaldevi C, Jaidi J, Panchal S, Fowler M et al. Comparison of lumped and 1D electrochemical models for prismatic 20Ah LiFePO4 battery sandwiched between minichannel cold-plates. Applied Thermal Engineering 2021; 199: 117586. https://doi.org/10.1016/j. applthermaleng.2021.117586
  • 21. Joshy N, Hajiyan M, Siddique ARM, Tasnim S, Simha H et al. Experimental investigation of the effect of vibration on phase change material (PCM) based battery thermal management system. Journal of Power Sources 2020; 450: 227717. https://doi.org/10.1016/j. jpowsour.2020.227717
  • 22. Weng J, Yang X, Zhang G, Ouyang D, Chen M et al. Optimization of the detailed factors in a phase-change-material module for battery thermal management. International Journal of Heat and Mass Transfer 2019; 138: 126-134. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.050
  • 23. Jilte RD, Kumar R, Ahmadi MH, Chen L. Battery thermal management system employing phase change material with cell-to-cell air cooling. Applied Thermal Engineering 2019; 161: 114199. https://doi.org/10.1016/j.applthermaleng.2019.114199
  • 24. Verma A, Shashidhara S, Rakshit D. A comparative study on battery thermal management using phase change material (PCM). Thermal Science and Engineering Progress 2019; 11: 74-83. https://doi.org/10.1016/j.tsep.2019.03.003
  • 25. Zhang X, Liu C, Rao Z. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material. Journal of Cleaner Production 2018; 201: 916-924. https://doi.org/10.1016/j.jclepro.2018.08.076
  • 26. Celik A, Coban H, Göcmen S, Ezan MA, Gören A et al. Passive thermal management of the lithium ion battery unit for a solar racing car. International Journal of Energy Research 2019; 43 (8): 3681-3691. https://doi.org/10.1002/er.4521
  • 27. Morali U. A numerical and statistical implementation of a thermal model for a lithium-ion battery. Energy 2022; 240: 122486. https://doi. org/10.1016/j.energy.2021.122486
  • 28. Kwon KH, Shin CB, Kang TH, Kim CS. A two-dimensional modeling of a lithium-polymer battery. Journal of Power Sources 2006; 163 (1): 151-157. https://doi.org/10.1016/j.jpowsour.2006.03.012
  • 29. Kim US, Shin CB, Kim CS. Modeling for the scale-up of a lithium-ion polymer battery. Journal of Power Sources 2009; 189 (1): 841-846. https://doi.org/10.1016/j.jpowsour.2008.10.019
  • 30. Gu H. Mathematical analysis of a Zn/NiOOH cell. Journal of the Electrochemical Society 1983; 130 (7): 1459. https://doi. org/10.1149/1.2120009
  • 31. Kim US, Yi J, Shin CB, Han T, Park S. Modeling the dependence of the discharge behavior of a lithium-ion battery on the environmental temperature. Journal of The Electrochemical Society 2011; 158 (5): A611. https://doi.org/10.1149/1.3565179
APA moralı u (2022). Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. , 1620 - 1631. 10.55730/1300-0527.3465
Chicago moralı ugur Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. (2022): 1620 - 1631. 10.55730/1300-0527.3465
MLA moralı ugur Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. , 2022, ss.1620 - 1631. 10.55730/1300-0527.3465
AMA moralı u Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. . 2022; 1620 - 1631. 10.55730/1300-0527.3465
Vancouver moralı u Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. . 2022; 1620 - 1631. 10.55730/1300-0527.3465
IEEE moralı u "Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system." , ss.1620 - 1631, 2022. 10.55730/1300-0527.3465
ISNAD moralı, ugur. "Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system". (2022), 1620-1631. https://doi.org/10.55730/1300-0527.3465
APA moralı u (2022). Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. Turkish Journal of Chemistry, 46(5), 1620 - 1631. 10.55730/1300-0527.3465
Chicago moralı ugur Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. Turkish Journal of Chemistry 46, no.5 (2022): 1620 - 1631. 10.55730/1300-0527.3465
MLA moralı ugur Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. Turkish Journal of Chemistry, vol.46, no.5, 2022, ss.1620 - 1631. 10.55730/1300-0527.3465
AMA moralı u Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. Turkish Journal of Chemistry. 2022; 46(5): 1620 - 1631. 10.55730/1300-0527.3465
Vancouver moralı u Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. Turkish Journal of Chemistry. 2022; 46(5): 1620 - 1631. 10.55730/1300-0527.3465
IEEE moralı u "Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system." Turkish Journal of Chemistry, 46, ss.1620 - 1631, 2022. 10.55730/1300-0527.3465
ISNAD moralı, ugur. "Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system". Turkish Journal of Chemistry 46/5 (2022), 1620-1631. https://doi.org/10.55730/1300-0527.3465