The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres

Yıl: 2022 Cilt: 46 Sayı: 5 Sayfa Aralığı: 1632 - 1641 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3466 İndeks Tarihi: 07-12-2022

The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres

Öz:
This study described the performance of carbon nanofiber modified chitosan (CNF@CS) composite microspheres for the controlled release of the Ibrutinib (IBR) drug. The surface morphology, particle sizes, and functional group contents of the microspheres were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron, and optical microscopy measurements. The obtained data demonstrated that the addition of CNF to the microsphere increased the encapsulation efficiency of the IBR while allowing the controlled and gradual release of the drug. In terms of the encapsulation efficiency and drug release rate, IBR@CS/TPP/CNF microspheres, achieving drug encapsulation efficiency of 83.09%, have the most suitable formulation according to the comparative studies. Furthermore, according to Korsmeyer-Peppas kinetic model, IBR release mechanism was anomalous diffusion (swelling-controlled behavior and diffusion.) because the IBR release profile was completed in 78 h under optimized conditions. Therefore, the development of CNF based chitosan microsphere is a promising approach to assure appropriate dosage, safety, and improving drug efficacy.
Anahtar Kelime: Chitosan carbon nanofiber composite Ibrutinib controlled drug delivery

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Bruschi ML. Strategies to modify the drug release from pharmaceutical systems: Woodhead Publishing; 2015.
  • 2. Qiu Q, Lu M, Li C, Luo X, Liu X et al. Novel self-assembled ibrutinib-phospholipid complex for potently peroral delivery of poorly soluble drugs with pH-dependent solubility. AAPS PharmSciTech 2018; 19 (8): 3571-3583. doi: 10.1208/s12249-018-1147-4
  • 3. Shi X, Wang C, Chen Q, Shen S, Song S et al. Improving physicochemical properties of Ibrutinib with cocrystal strategy based on structures and natures of the carboxylic acid co-formers. Journal of Drug Delivery Science and Technology 2021; 63: 102554. doi: 10.1016/j. jddst.2021.102554
  • 4. Zhao L, Tang B, Tang P, Sun Q, Suo Z et al. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles for ibrutinib delivery: a potential nanoformulation of novel kinase inhibitor. Journal of Pharmaceutical Sciences 2020; 109 (2): 1136-1144. doi: 10.1016/j.xphs.2019.10.007
  • 5. de Vries R, Smit JW, Hellemans P, Jiao J, Murphy J et al. Stable isotope labelled intravenous microdose for absolute bioavailability and effect of grapefruit juice on ibrutinib in healthy adults. British Journal of Clinical Pharmacology 2016; 81 (2): 235-245. doi: 10.1111/ bcp.12787
  • 6. Lee C-S, Rattu MA, Kim SS. A review of a novel, Bruton’s tyrosine kinase inhibitor, ibrutinib. Journal of Oncology Pharmacy Practice 2016; 22 (1): 92-104. doi: 10.1177/1078155214561281
  • 7. GV YD, Prabhu A, Anil S, Venkatesan J. Preparation and characterization of dexamethasone loaded sodium alginate-graphene oxide microspheres for bone tissue engineering. Journal of Drug Delivery Science and Technology 2021; 64: 102624. doi: 10.1016/j. jddst.2021.102624
  • 8. Puoci F, Hampel S, Parisi Oi, Hassan A, Cirillo G et al. Imprinted microspheres doped with carbon nanotubes as novel electroresponsive drug delivery systems. Journal of Applied Polymer Science 2013; 130 (2): 829-834. doi: 10.1002/app.39212
  • 9. Shi W, Ching YC, Chuah CH. Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: A review. International Journal of Biological Macromolecules 2021; 170: 751-767. doi: 10.1016/j.ijbiomac.2020.12.214
  • 10. Chang C, Gao P, Bao D, Wang L, Wang Y et al. Ball-milling preparation of one-dimensional Co–carbon nanotube and Co–carbon nanofiber core/shell nanocomposites with high electrochemical hydrogen storage ability. Journal of Power Sources 2014; 255: 318-324. doi: 10.1016/j.jpowsour.2014.01.034
  • 11. Parihar S, Sharon M, Sharon M. Carbon nanomaterial shows drug delivery promise: Part 1—Selection of carbon nanomaterial and drug loading. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry 2006; 36 (1): 107-113. doi: 10.1080/15533170500478792
  • 12. Popa N, Novac O, Profire L, Hritcu D, Popa MI. Inclusion and release of theophylline from chitosan based microparticles. Turkish Journal of Chemistry 2010; 34 (2): 255-262. doi: 10.3906/kim-0812-29
  • 13. Hritcu D, Popa MI, Popa N, Badescu V, Balan V. Preparation and characterization of magnetic chitosan nanospheres. Turkish Journal of Chemistry 2009; 33 (6): 785-796. doi: 10.3906/kim-0812-42
  • 14. Shu X, Zhu K. Chitosan/gelatin microspheres prepared by modified emulsification and ionotropic gelation. Journal of Microencapsulation 2001; 18 (2): 237-245. doi: 10.1080/02652040010000415
  • 15. Bayomi M, Al-Suwayeh S, El-Helw A, Mesnad A. Preparation of casein–chitosan microspheres containing diltiazem hydrochloride by an aqueous coacervation technique. Pharmaceutica Acta Helvetiae 1998; 73 (4): 187-192. doi: 10.1016/S0031-6865(98)00020-X
  • 16. Jafari Z, Rad AS, Baharfar R, Asghari S, Esfahani MR. Synthesis and application of chitosan/tripolyphosphate/graphene oxide hydrogel as a new drug delivery system for Sumatriptan Succinate. Journal of Molecular Liquids 2020; 315: 113835. doi: 10.1016/j.molliq.2020.113835
  • 17. Kilicarslan M, Ozkan SA, Baykara T. LC determination of clindamycin phosphate from chitosan microspheres. Chromatographia 2010; 72 (9): 799-805. doi: 10.1365/s10337-010-1730-7 0009-5893/10/11
  • 18. Prasad D, Mohanta GP, Sudhakar M. Development and Optimization of Self-nanoemulsifying Drug Delivery System of Ibrutinib. Asian Journal of Pharmaceutics 2020; 14 (1): 91-104. doi: 10.22377/ajp.v14i1.3534
  • 19. Gökbulut E, Vural İ, Aşıkoğlu M, Özdemir N. Floating drug delivery system of itraconazole: Formulation, in vitro and in vivo studies. Journal of Drug Delivery Science and Technology 2019; 49: 491-501. doi: 10.1016/j.jddst.2018.12.019
  • 20. Chiang Y-C, Lin W-H, Chang Y-C. The influence of treatment duration on multi-walled carbon nanotubes functionalized by $H_2SO_4/ HNO_3$ oxidation. Applied Surface Science 2011; 257 (6): 2401-2410. doi: 10.1016/j.apsusc.2010.09.110
  • 21. Zhang G, Sun S, Yang D, Dodelet J-P, Sacher E. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon 2008; 46 (2): 196-205. doi: 10.1016/j.carbon.2007.11.002
  • 22. Shi X, Fan B, Gu C, Zhou X, Wang C et al. Ibrutinib and carboxylic acid coamorphous system with increased solubility and dissolution: A potential interaction mechanism. Journal of Drug Delivery Science and Technology. 2020; 59: 101875. doi: 10.1016/j.jddst.2020.101875
  • 23. Rangaraj N, Pailla SR, Chowta P, Sampathi S. Fabrication of ibrutinib nanosuspension by quality by design approach: intended for enhanced oral bioavailability and diminished fast fed variability. AAPS PharmSciTech. 2019; 20 (8) :1-18. doi: 10.1208/s12249-019-1524-7
  • 24. Pooresmaeil M, Namazi H. Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; characterization, drug release kinetics and evaluation of anticancer activity. International Journal of Biological Macromolecules 2020; 162: 501-511. doi: 10.1016/j.ijbiomac.2020.06.183
  • 25. Vaghani SS, Patel MM, Satish C. Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole. Carbohydrate Research 2012; 347 (1): 76-82. doi: 10.1016/j.carres.2011.04.048
  • 26. Zou X, Zhao X, Ye L, Wang Q, Li H. Preparation and drug release behavior of pH-responsive bovine serum albumin-loaded chitosan microspheres. Journal of Industrial and Engineering Chemistry 2015; 21: 1389-1397. doi: 10.1016/j.jiec.2014.06.012
  • 27. Murugesan R, Haldorai Y, Sibi L, Sureshkumar R. Ibrutinib conjugated surface-functionalized multiwalled carbon nanotubes and its biopolymer composites for targeting prostate carcinoma. Journal of Materials Science 2021; 56 (33): 18684-18696. doi: 10.1007/s10853- 021-06559-w
  • 28. Shawky HA, El Aassar AHM, Abo Zeid DE. Chitosan/carbon nanotube composite beads: Preparation, characterization, and cost evaluation for mercury removal from wastewater of some industrial cities in Egypt. Journal of Applied Polymer Science 2012; 125 (S1): E93-E101. doi: 10.1002/app.35628
  • 29. Tilkan MGY, Özdemir N. Investigation of the parameters affecting the release of flurbiprofen from chitosan microspheres. Brazilian Journal of Pharmaceutical Sciences 2017; 53 (4): e00242. doi: 10.1590/s2175-97902017000400242
  • 30. Bodmeier R, Oh K-H, Pramar Y. Preparation and evaluation of drug-containing chitosan beads. Drug development and industrial pharmacy 1989; 15 (9): 1475-1494. doi: 10.3109/03639048909062758
  • 31. Bodmeier R, Paeratakul O. Spherical agglomerates of water insoluble drugs. Journal of Pharmaceutical Sciences 1989; 78 (11): 964-967. doi: 10.1002/jps.2600781117
  • 32. Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine 2010; 6 (1): 153-160. doi: 10.1016/j.nano.2009.05.009
  • 33. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science 2011; 36 (8): 981-1014. doi: 10.1016/j.progpolymsci.2011.02.001
  • 34. Khlibsuwan R, Siepmann F, Siepmann J, Pongjanyakul T. Chitosan-clay nanocomposite microparticles for controlled drug delivery: Effects of the MAS content and TPP crosslinking. Journal of Drug Delivery Science and Technology 2017; 40: 1-10. doi: 10.1016/j. jddst.2017.05.012
  • 35. Ko J, Park HJ, Hwang SJ, Park J, Lee J. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. International journal of pharmaceutics 2002; 249 (1-2): 165-174. doi: 10.1016/S0378-5173(02)00487-8
  • 36. Shu X, Zhu K. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. International journal of pharmaceutics 2000; 201 (1): 51-58. doi: 10.1016/S0378-5173(00)00403-8
  • 37. Armutcu C, Pişkin S. Evaluation of controlled hydroxychloroquine releasing performance from calcium-alginate beads. Hittite Journal of Science and Engineering 2021; 8 (3): 255-263. doi: 10.17350/HJSE19030000236
  • 38. Peppas N. Analysis of Fickian and non-Fickian drug release from polymers. Pharmaceutica Acta Helvetiae 1985; 60 (4): 110-111.
APA Armutcu C (2022). The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres. , 1632 - 1641. 10.55730/1300-0527.3466
Chicago Armutcu Canan The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres. (2022): 1632 - 1641. 10.55730/1300-0527.3466
MLA Armutcu Canan The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres. , 2022, ss.1632 - 1641. 10.55730/1300-0527.3466
AMA Armutcu C The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres. . 2022; 1632 - 1641. 10.55730/1300-0527.3466
Vancouver Armutcu C The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres. . 2022; 1632 - 1641. 10.55730/1300-0527.3466
IEEE Armutcu C "The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres." , ss.1632 - 1641, 2022. 10.55730/1300-0527.3466
ISNAD Armutcu, Canan. "The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres". (2022), 1632-1641. https://doi.org/10.55730/1300-0527.3466
APA Armutcu C (2022). The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres. Turkish Journal of Chemistry, 46(5), 1632 - 1641. 10.55730/1300-0527.3466
Chicago Armutcu Canan The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres. Turkish Journal of Chemistry 46, no.5 (2022): 1632 - 1641. 10.55730/1300-0527.3466
MLA Armutcu Canan The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres. Turkish Journal of Chemistry, vol.46, no.5, 2022, ss.1632 - 1641. 10.55730/1300-0527.3466
AMA Armutcu C The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres. Turkish Journal of Chemistry. 2022; 46(5): 1632 - 1641. 10.55730/1300-0527.3466
Vancouver Armutcu C The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres. Turkish Journal of Chemistry. 2022; 46(5): 1632 - 1641. 10.55730/1300-0527.3466
IEEE Armutcu C "The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres." Turkish Journal of Chemistry, 46, ss.1632 - 1641, 2022. 10.55730/1300-0527.3466
ISNAD Armutcu, Canan. "The investigation of parameters affecting Ibrutinib release from chitosan/ tripolyphosphate/carbon nanofiber composite microspheres". Turkish Journal of Chemistry 46/5 (2022), 1632-1641. https://doi.org/10.55730/1300-0527.3466