Yıl: 2022 Cilt: 46 Sayı: 5 Sayfa Aralığı: 1642 - 1650 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3467 İndeks Tarihi: 07-12-2022

L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles

Öz:
The cross-linked microbeads with average diameter of 106–300 μm, [poly(EGDMA-MATrp)], were obtained by copolymerization reaction of N-methacryloyl-L-(+)-tryptophan methyl ester (MATrp) with ethylene glycol dimethacrylate (EGDMA) and successfully applied as a heterogeneous catalyst in conjugate addition reaction of nitromethane to substituted 2-iminochromenes in aqueous media. A variety of 2-amino-4-(nitromethyl)-4H-chromene-3-carbonitriles has been synthesized in good yields. Polymeric microbeads were very durable and reused 5 times without a significant loss of activity. DFT calculations and experimental results revealed the significant role of π-π interactions as well as hydrogen bonding in the reaction mechanism.
Anahtar Kelime: Polymeric microbeads L-(+)-tryptophan methyl ester nitromethane addition π-π interaction DFT calculation

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Sýkora D, Řezanka P, Záruba K, Král V. Recent advances in mixed-mode chromatographic stationary phases. Journal of Separation Science 2019; 42 (1): 89-129. doi: 10.1002/jssc.201801048
  • 2. Kim S, Kim B, Dogan NA, Yavuz CT. Sustainable Porous Polymer Catalyst for Size-Selective Cross-Coupling Reactions. ACS Sustainable Chemistry & Engineering 2019; 7 (12): 10865-10872. doi: 10.1021/acssuschemeng.9b01729
  • 3. Funke W, Okay O, Joos-Müller B. Microgels-Intramolecularly Crossünked Macromolecules with a Globular Structure. Advances in Polymer Science 1998; 136: 139-234. doi: 10.1007/3-540-69682-2_4
  • 4. Barner L. Synthesis of Microspheres as Versatile Functional Scaffolds for Materials Science Applications. Advanced Materials 2009; 21 (24): 2547-2553. doi: 10.1002/adma.200900373
  • 5. Steinke JHG, Dunkin IR, Sherrington DC. Transparent macroporous polymer monoliths. Macromolecules. 1996; 29 (18): 5826-5834. doi: 10.1021/ma951875e
  • 6. Zhao W, Li A, Zhang A, Zheng Y, Liu J. Recent Advances in Functional-Polymer-Decorated Transition-Metal Nanomaterials for Bioimaging and Cancer Therapy. ChemMedChem 2018; 13 (20): 2134-2149. doi: 10.1002/cmdc.201800462
  • 7. Yuan D, Zhang H. Nanosized palladium supported on diethylenetriamine modified superparamagnetic polymer composite microspheres: Synthesis, characterization and application as catalysts for the Suzuki reactions. Applied Catalysis A: General 2014; 475: 249-255. doi: 10.1016/J.apcata.2014.01.037
  • 8. Ying A, Liu S, Li Z, Chen G, Yang J et al. Magnetic Nanoparticles-Supported Chiral Catalyst with an Imidazolium Ionic Moiety: An Efficient and Recyclable Catalyst for Asymmetric Michael and Aldol Reactions. Advanced Synthesis & Catalysis 2016; 358 (13): 2116-2125. doi: 10.1002/adsc.201600145
  • 9. Ling X, Xie Y, Lin X, Li L, Qiu T. Porous polymer microsphere functionalized with benzimidazolium based ionic liquids as effective solid catalysts for esterification. The Chinese Journal of Chemical Engineering 2019; 27 (10): 2455-2466. doi: 10.1016/j.cjche.2019.01.039
  • 10. Dadhania HN, Raval DK, Dadhania AN. Magnetically retrievable magnetite (Fe3O4) immobilized ionic liquid: An efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols. Catalysis Science & Technology 2015; 5 (10): 4806-4812. doi: 10.1039/c5cy00849b
  • 11. Bukowska A, Bester K, Pytel M, Bukowski W. Polymer Beads Decorated with Dendritic Systems as Supports for A3 Coupling Catalysts. Catalysis Letters 2021; 151 (2): 422-434. doi: 10.1007/s10562-020-03301-0.
  • 12. Ullah MW, Thao NTP, Sugimoto T, Haraguchi N. Synthesis of core-corona polymer microsphere-supported cinchonidinium salt and its application to asymmetric synthesis. Molecular Catalysis 2019; 473: 110392. doi: 10.1016/j.mcat.2019.110392
  • 13. Chen J, Ren Y, Li H, Yang W, Wu Q et al. Structural regulation of magnetic polymer microsphere@ionic liquids with an intermediate protective layer and application as core-shell-shell catalysts with high stability and activity. ACS Omega 2020; 5 (36): 23062-23069. doi: 10.1021/acsomega.0c02777
  • 14. Osman B, Tümay Özer E, Demirbel E, Güçer Ş, Beşirli N. Synthesis and characterization of L-tryptophan containing microbeads for removal of dimethyl phthalate from aqueous phase. Separation and Purification Technology 2013; 109: 40-47. doi: 10.1016/j.seppur.2013.02.025
  • 15. Osman B, Tümay Özer E, Kara A, Yeşilova E, Beşirli N. Properties of magnetic microbeads in removing bisphenol-A from aqueous phase. Journal of Porous Materials 2015; 22 (1): 37-46. doi: 10.1007/s10934-014-9870-z
  • 16. Osman B, Tümay Özer E, Beşirli N, Güçer Ş. Development and application of a solid phase extraction method for the determination of phthalates in artificial saliva using new synthesised microspheres. Polymer Testing 2013; 32 (4): 810-818. doi: 10.1016/j. polymertesting.2013.03.017
  • 17. Tümay Özer E, Osman B, Yazıcı T. Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water. Journal of Chromatography A 2017; 1500: 53-60. doi: 10.1016/j.chroma.2017.04.013
  • 18. Tümay Özer E, Osman B, Parlak B. An experimental design approach for the solid phase extraction of some organophosphorus pesticides from water samples with polymeric microbeads. Microchemical Journal 2020; 154: 104537. doi: 10.1016/j.microc.2019.104537
  • 19. Tümay Özer E, Osman B, Kara A, Demirbel E, Beşirli N et al. Diethyl phthalate removal from aqueous phase using poly(EGDMA- MATrp) beads: Kinetic, isothermal and thermodynamic studies. Environmental Technology 2015; 36 (13): 1698-1706. doi: 10.1080/09593330.2015.1006687
  • 20. DiLabio GA., Johnson ER. Lone Pair−π and π−π Interactions Play an Important Role in Proton-Coupled Electron Transfer Reactions. Journal of the American Chemical Society 2007; 129 (19): 6199-6203. doi: 10.1021/ja068090g
  • 21. Peris E. Polyaromatic N-heterocyclic carbene ligands and pi-stacking. Catalytic consequences. Chemical Communications 2016; 52: 5777. doi: 10.1039/c6cc02017h
  • 22. Ruiz-Botella S, Peris E. Unveiling the Importance of π-Stacking in Borrowing-Hydrogen Processes Catalysed by Iridium Complexes with Pyrene Tags. Chemistry-A European Journal 2015; 21 (43): 15263-15271. doi: 10.1002/chem.201502948
  • 23. Mazzonna M, Bietti M, Dilabio GA, Lanzalunga O, Salamone M. Importance of π-stacking interactions in the hydrogen atom transfer reactions from activated phenols to short-lived N-oxyl radicals. The Journal of Organic Chemistry 2014; 79 (11): 5209-5218. doi: 10.1021/ jo500789v
  • 24. Wang Y, Zhang SR, Wang Y, Qu LB, Wei D. Insights into the NHC-catalyzed cascade Michael/aldol/lactamization reaction: Mechanism and origin of stereoselectivity. Organic Chemistry Frontiers 2018; 5 (13): 2065-2072. doi: 10.1039/c8qo00398j
  • 25. China Raju B, Nageswara Rao R, Suman P, Yogeeswarib P, Sriramet D et al. Synthesis, structure–activity relationship of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents. Bioorganic & Medicinal Chemistry Letters 2011; 21 (10): 2855-2859. doi: 10.1016/j.bmcl.2011.03.079
  • 26. Sabry NM, Mohamed HM, Khattab ESAEH, Motlaq SS, El-Agrody AM. Synthesis of 4H-chromene, coumarin, 12H-chromeno[2,3-d] pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities. European Journal of Medicinal Chemistry 2011; 46 (2): 765-772. doi: 10.1016/j.ejmech.2010.12.015
  • 27. Singh OM, Devi NS, Thokchom DS, Sharma GJ. Novel 3-alkanoyl/aroyl/heteroaroyl-2H-chromene-2-thiones: Synthesis and evaluation of their antioxidant activities. European Journal of Medicinal Chemistry 2010; 45 (6): 2250-2257. doi: 10.1016/j.ejmech.2010.01.070
  • 28. Bhavsar D, Trivedi J, Parekh S et al. Synthesis and in vitro anti-HIV activity of N-1,3-benzo[d]thiazol-2-yl-2- (2-oxo-2H-chromen-4- yl)acetamide derivatives using MTT method. Bioorganic & Medicinal Chemistry Letters 2011; 21 (11): 3443-3446. doi: 10.1016/j. bmcl.2011.03.105
  • 29. Li W, Liu H, Jiang X, Wang J. Enantioselective organocatalytic conjugate addition of nitroalkanes to electrophilic 2-iminochromenes. ACS Catalysis 2012; 2 (8): 1535-1538. doi: 10.1021/cs300313j
  • 30. Patel JP, Avalani JR, Raval DK. Polymer supported sulphanilic acid: A highly efficient and recyclable green heterogeneous catalyst for the construction of 4,5-dihydropyrano[3,2-c] chromenes under solvent-free conditions. Journal of Chemical Sciences 2013; 125 (3): 531-536. doi: 10.1007/s12039-013-0408-8
  • 31. Gupta V, Singh RP. Enantioselective vinylogous Michael addition of β,γ-unsaturated butenolide to 2-iminochromenes. New Journal of Chemistry 2019; 43 (25): 9771-9775. doi: 10.1039/c9nj01584a
  • 32. Pourjavadi A, Hosseini SH, Emami ZS. Cross-linked basic nanogel; robust heterogeneous organocalayst. Chemical Engineering Journal 2013; 232: 453-457. doi: 10.1016/j.cej.2013.07.090
  • 33. Kalla RMN, Varyambath A, Kim MR, Kim I. Amine-functionalized hyper-crosslinked polyphenanthrene as a metal-free catalyst for the synthesis of 2-amino-tetrahydro-4H-chromene and pyran derivatives. Applied Catalysis A: General 2017; 538: 9-18. doi: 10.1016/j. apcata.2017.03.009
  • 34. Mohammadi P, Sheibani H. Synthesis and characterization of Fe3O4@SiO2 guanidine-poly acrylic acid nanocatalyst and using it for one- pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes in water. Materials Chemistry and Physics 2019; 228: 140-146. doi: 10.1016/j.matchemphys.2018.11.058
  • 35. Siddiqui S, Siddiqui ZN. Copper Schiff base functionalized polyaniline (Cu-SB/PANI): A highly efficient polymer based organometallic catalyst for the synthesis of 2-amino chromene derivatives. Applied Organometallic Chemistry 2019; 33 (10). doi: 10.1002/aoc.5161
  • 36. Jadhav SN, Patil SP, Sahoo DP, Rath D, Parida K et al. Organocatalytic Cascade Knoevenagel–Michael Addition Reactions: Direct Synthesis of Polysubstituted 2-Amino-4H-Chromene Derivatives. Catalysis Letters 2020; 150 (8): 2331-2351. doi: 10.1007/s10562-019-03089-8
  • 37. Koz G, Koz O, Coskun N. Enantioselective synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3-carbonitriles from 2-iminochromenes. Synthetic Communications 2016; 46 (10): 909-915. doi: 10.1080/00397911.2016.1177728
  • 38. Koz G, Koz Ö. DBU-catalyzed synthesis of novel 2-Amino-3-nitrile-4H-chromenes. Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences 2017; 72 (9): 647-653. doi: 10.1515/znb-2017-0040
  • 39. Li W, Huang J, Wang J. Organocatalytic conjugate addition promoted by multi-hydrogen-bond cooperation: Access to chiral 2-amino-3- nitrile-chromenes. Organic and Biomolecular Chemistry 2013; 11 (3): 400-406. doi: 10.1039/c2ob27102h
  • 40. Volmajer J, Toplak R, Leban I, Le Marechal AM. Synthesis of new iminocoumarins and their transformations into N-chloro and hydrazono compounds. Tetrahedron 2005; 61 (29): 7012-7021. doi: 10.1016/j.tet.2005.05.020
  • 41. Dong W, Xu D, Xie J. Aqueous-mediated michael addition of active methylene compounds with nitroalkenes. Chinese Journal of Chemistry 2012; 30 (8): 1771-1774. doi: 10.1002/cjoc.201200228
  • 42. Lv W, Guo C, Dong Z, Tang S, Liu B, Dong C. C3-Symmetric cinchonine-squaramide as a recyclable efficient organocatalyst for tandem Michael addition–cyclisation of malononitrile and nitrovinylphenols. Tetrahedron Asymmetry 2016; 27 (14-15): 670-674. doi: 10.1016/j. tetasy.2016.05.011
  • 43. Hu K, Lu A, Wang Y, Zhou Z, Tang C. Chiral bifunctional squaramide catalyzed asymmetric tandem Michael-cyclization reaction: Efficient synthesis of optically active 2-amino-4H-chromene-3-carbonitrile derivatives. Tetrahedron Asymmetry 2013; 24 (15-16): 953-957. doi: 10.1016/j.tetasy.2013.07.010
  • 44. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 2010; 132 (15). doi: 10.1063/1.3382344
APA HALIÇ A, Osman B, Kaya Y, KOZ Ö, KOZ G (2022). L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles. , 1642 - 1650. 10.55730/1300-0527.3467
Chicago HALIÇ AYSE,Osman Bilgen,Kaya Yunus,KOZ ÖMER,KOZ GAMZE L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles. (2022): 1642 - 1650. 10.55730/1300-0527.3467
MLA HALIÇ AYSE,Osman Bilgen,Kaya Yunus,KOZ ÖMER,KOZ GAMZE L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles. , 2022, ss.1642 - 1650. 10.55730/1300-0527.3467
AMA HALIÇ A,Osman B,Kaya Y,KOZ Ö,KOZ G L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles. . 2022; 1642 - 1650. 10.55730/1300-0527.3467
Vancouver HALIÇ A,Osman B,Kaya Y,KOZ Ö,KOZ G L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles. . 2022; 1642 - 1650. 10.55730/1300-0527.3467
IEEE HALIÇ A,Osman B,Kaya Y,KOZ Ö,KOZ G "L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles." , ss.1642 - 1650, 2022. 10.55730/1300-0527.3467
ISNAD HALIÇ, AYSE vd. "L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles". (2022), 1642-1650. https://doi.org/10.55730/1300-0527.3467
APA HALIÇ A, Osman B, Kaya Y, KOZ Ö, KOZ G (2022). L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles. Turkish Journal of Chemistry, 46(5), 1642 - 1650. 10.55730/1300-0527.3467
Chicago HALIÇ AYSE,Osman Bilgen,Kaya Yunus,KOZ ÖMER,KOZ GAMZE L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles. Turkish Journal of Chemistry 46, no.5 (2022): 1642 - 1650. 10.55730/1300-0527.3467
MLA HALIÇ AYSE,Osman Bilgen,Kaya Yunus,KOZ ÖMER,KOZ GAMZE L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles. Turkish Journal of Chemistry, vol.46, no.5, 2022, ss.1642 - 1650. 10.55730/1300-0527.3467
AMA HALIÇ A,Osman B,Kaya Y,KOZ Ö,KOZ G L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles. Turkish Journal of Chemistry. 2022; 46(5): 1642 - 1650. 10.55730/1300-0527.3467
Vancouver HALIÇ A,Osman B,Kaya Y,KOZ Ö,KOZ G L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles. Turkish Journal of Chemistry. 2022; 46(5): 1642 - 1650. 10.55730/1300-0527.3467
IEEE HALIÇ A,Osman B,Kaya Y,KOZ Ö,KOZ G "L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles." Turkish Journal of Chemistry, 46, ss.1642 - 1650, 2022. 10.55730/1300-0527.3467
ISNAD HALIÇ, AYSE vd. "L-(+)-Tryptophan methyl ester derived polymeric microbeads as an efficient heterogeneous catalyst for green synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3- carbonitriles". Turkish Journal of Chemistry 46/5 (2022), 1642-1650. https://doi.org/10.55730/1300-0527.3467