Yıl: 2022 Cilt: 46 Sayı: 5 Sayfa Aralığı: 1677 - 1693 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3471 İndeks Tarihi: 07-12-2022

Synthesis and characterization of a series of conducting polymers based on indole and carbazole

Öz:
A series of indole (In) and carbazole (Cz) derivative monomers have been synthesized, such as 4-[3-carbazolyl] indole (4In-3Cz), 5-[3-carbazolyl] indole (5In-3Cz), 6-[3-carbazolyl] indole (6In-3Cz), 7-[3-carbazolyl] indole (7In-3Cz). The comonomers synthesized by Stille coupling reaction were characterized by $^1H-NMR$ and elemental analysis. Potentiodynamic method was used for electropolymerization of comonomers, Indole, Cz, and the mixture of In and Cz. Electrochemical activities of resulting P[4In-3Cz], P[5In-3Cz], P[6In-3Cz], P[7In-3Cz], polyindole (PIn), polycarbazole (PCz) and P[In-co-Cz] films were investigated comparatively by CV at different scan rates, electrochemical impedance spectroscopy (EIS) and spectroelectrochemical measurements. The ionization potentials, Ip, specific capacitance, $C_{sp}$, and optical band gap, $E_g$, of copolymers were obtained from these measurements. In order to gain some preliminary information on the structure of the copolymers, DFT analysis was performed and dimers and tetramers were optimized. Results suggested that, in order to obtain an In-Cz copolymer with low oxidation potential and band gap, indole ring should be substituted through 5 position to the 3 position of Cz. If high specific capacitance value or high conductivity are desired, P[4In-3Cz] and P[6In-3Cz] are the best copolymers, respectively.
Anahtar Kelime: Carbazolylindoles comonomers synthesis electropolymerization electronic and optical properties

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Morin JF, Leclerc M, Ades D, Siove A. Polycarbazoles: 25 Years of Progress. Macromolecular Rapid Communication 2005; 26 (10): 761-778. https://doi.org/10.1002/marc.200500096
  • 2. Saraswathi R, Gerard M, Malhotra BD. Characteristics of aqueous polycarbazole batteries. Journal of Applied Polymer Science 1999; 74 (1): 145-150. https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<145::AID-APP18>3.0.CO;2-C
  • 3. Verghese MM, Ram MK., Vardhan H, Malhotra BD, Ashraf SM. Electrochromic properties of polycarbazole films. Polymer 1997; 38: 1625. https://doi.org/10.1016/s0032-3861(96)00655-6
  • 4. Sivakkumar SR, Angulakshmi N, Saraswathi R. Characterization of Poly (indole-5-carboxylic Acid) in Aqueous Rechargeable Cells. Journal of Applied Polymer Science, 2005; 98: 917.
  • 5. Maarouf EB, Billaud D, Hannecart E. Electrochemical cycling and electrochromic properties of polyindole. Materials Research Bulletin 1994; 29 (6): 637.
  • 6. Pandey PC, Prakash R. Electrochemical Cycling and Electrochromic Properties of Polyindole. Electrochemical Society 1998; 145 (3): 999.
  • 7. Pandey PC, Prakash R. Characterization of Electropolymerized Polyindole: Application in the Construction of a Solid State, Ion Selective Electrode. Journal Electrochemical Society 1998; 145 (12): 4103.
  • 8. Machida K, Hiraki R, Takenouchi H, Naoi K. Redox capacitor properties of indole derivatives II. Electrochemical characteristics of substituted cyclic indole trimers. Electrochemistry 2005; 73 (9): 813-822.
  • 9. Düdükçü M, Udum YA, Ergun Y, Köleli F. Electrodeposition of poly (4-methyl carbazole-3-carboxylic acid) on steel surfaces and corrosion protection of steel. Journal of Applied Polymer Science 2009; 111 (3): 1496-1500.
  • 10. Somasundrum M, Bannister JV. Mediatorless electrocatalysis at a conducting polymer electrode: application to ascorbate and NADH measurement. Journal Chemical Society Chemical Communication 1993; 21: 1629-1631.
  • 11. Wan F, Li L, Wan X, Xue G. Modification of Polyindole by the incorporation of Pyrrole Unit. Journal of Applied Polymer Science 2002; 85 (4): 814-820.
  • 12. Dhanalakshmi K, Saraswathi R. Electrochemical preparation and characterization of conducting copolymers: poly(pyrrole-co-indole). Journal Material Science 2001; 36 (17): 4107.
  • 13. Nie G, Han X, Zhang S, Xu, J, Cai T. Electrochemical copolymerization of indole and 3 methylthiophene. Journal of Applied Polymer Science 2007; 104: 3129.
  • 14. Xu JK, Nie GM, Zhang SS, Han XJ, Hou J et al. Electrochemical copolymerization of indole and 3, 4-ethylenedioxythiophene. Journal Material Science 2005; 40 (11): 2867.
  • 15. Saraç AS, Serantoni M, Tofail SAM, Cunnane VJ. Nanoscale Characterization of Carbazole–Indole Copolymers Modified Carbon Fiber Surfaces. Journal of Nanoscience and Nanotechnology 2005; 5 (10): 1677.
  • 16. Kuo CW, Hsieh TH, Hsieh CK, Liao JW, Wu TY. Electrosynthesis and Characterization of Four Electrochromic Polymers Based on Carbazole and Indole-6-Carboxylic Acid and Their Applications in High-Contrast Electrochromic Devices. Journal of The Electrochemical Society 2014; 161 (14): D782-D790.
  • 17. Kuo CW, Wu TY, Huang MW. Electrochromic characterizations of copolymers based on 4,4-bis(N-carbazolyl)-1,1-biphenyl and indole-6- carboxylic acid and their applications in electrochromic devices. Journal of the Taiwan Institute of Chemical Engineers 2016; 68: 481–488.
  • 18. Hwang J, Park J, Kim YJ, Ha YH, Park CE et al. Indolo[3,2-b]indole-Containing Donor–Acceptor Copolymers for High-Efficiency Organic Solar Cells. Chemical Materials 2017; 29 (5): 2135–2140. https://doi.org/10.1021/acs.chemmater.6b04745
  • 19. Wadatkar NS, Waghuley SA. Electrical investigation on thiophene–indole conducting copolymers as synthesized through in situ chemical copolymerization route. Polymer Bulletin 2020; 77: 4181–4196. https://doi.org/10.1007/s00289-019-02967-w
  • 20. Katsoulidis AP, Dyar SM, Carmieli R, Malliakas CD, Michael R et al. Copolymerization of terephthalaldehyde with pyrrole, indole and carbazole gives microporous POFs. Journal of Material Chemistry A, 2013; 1: 10465-10473.
  • 21. Gobalasingham NS, Ekiz S, Pankow RM, Livi F, Bundgaard E et al. Carbazole-based copolymers via direct arylation polymerization (DArP) for Suzuki-convergent polymer solar cell performance. Polymer Chemistry 2017; 8 (30): 4393-402.
  • 22. Xiao H, Deng Y, Yuan J, Gao P, Zhao B et al. Synthesis and Photovoltaic Properties of the Copolymers Based on Carbazole with Tetrathiophene Porphyrin Side Chains Linked by a Flexible Alkyl-interval. Chinese Journal of Chemistry 2018; 36 (7): 599-604. https:// doi.org/10.1002/cjoc.201700804
  • 23. Maertens F, Toppet S, Hoornaert GJ, Compernolle F. Incorporation of an indole-containing diarylbutylamine pharmacophore into furo [2, 3-a] carbazole ring systems. Tetrahedron 2005; 61 (7): 1715.
  • 24. Bergman J. Condensation of indole and formaldehyde in the presence of air and sensitizers: A facile synthesis of indolo[3.2-b] carbazole. Tetrahedron 1970; 26 (13): 3353.
  • 25. Levesque I, Bertrand PO, Blouin N, Leclerc M, Zecchin S et al. Synthesis and thermoelectric properties of polycarbazole, polyindolocarbazole, and polydiindolocarbazole derivatives. Chemistry. Materials 2007; 19: 2128.
  • 26. Stille JK. The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Organic Electrophiles New Synthetic Methods. Angewandte Chemie International Edition in English 1986; 25: 508.
  • 27. Yamamoto T, Yamamoto A. A novel type of polycondensation of polyhalogenated organic aromatic compounds producing thermostable polyphenylene type polymers promoted by nickel complexes. Chemistry Letters 1977; 6 (4): 353-356. https://doi.org/10.1246/cl.1977.353
  • 28. Heywang G, Jonas F. Poly (alkylenedioxythiophene)-new, very stable conducting polymers Advanced Material 1992; 4 (2): 116-118. https:// doi.org/10.1002/adma.19920040213
  • 29. Faid K, Cloutier R, Leclerc M. Design of novel electroactive polybithiophene derivatives. Macromolecules 1993; 26: 2501-2507.
  • 30. Faid K, Frechette M, Ranger M, Mazerolle L, Levesque I et al. Chromic Phenomena in Regioregular and Non-regioregular Polythiophene Derivatives. Chemistry Materials 1995; 7: 1390.
  • 31. Leclerc M, Faid K. Electrical and optical properties of processable polythiophene derivatives: structure property relationships. Advanced Materials 1997; 9: 1087.
  • 32. McCullough RD. The chemistry of conducting polythiophenes. Advanced Materials 1998; 10: 93.
  • 33. Rehahn M, Schluter AD, Wegner G, Feast WJ. Soluble poly (para-phenylene)s. 1. Extension of the Yamamoto synthesis to dibromobenzenes substituted with flexible side chains Polymer 1989; 30: 1054.
  • 34. Pei Q, Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. Journal of American Chemical Society 1996; 118: 7416.
  • 35. Sotzing GA, Reynolds JR. Electrochromic conducting polymers via electrochemical polymerization of bis (2-(3, 4-ethylenedioxy) thienyl) monomers. Chemistry Materials 1996; 8: 882.
  • 36. Geissler U, Hallensleben ML, Rohde N. Poly[arylene alt [bis(1 methylpyrrolylene)]s, 1. Synthesis and electrochemical polymerization of terarenes. Macromolecular Chemistry and Physics 1996; 197: 2565. https://doi.org/10.1002/macp.1996.021970819
  • 37. Sezer E, Hooren M Van, Saraç AS, Hallensleben ML. Synthesis and electrochemical polymerization of ter-arenes based on N-ethyl carbazole and thiophene. Journal of Polymer Science Part A Polymer Chemistry 1999; 37: 379. https://doi.org/10.1002/(SICI)1099- 0518(19990215)37:4<379::AID-POLA1>3.0.CO;2-I
  • 38. Sezer E, Saraç AS, Parlak EA. Electrochemical synthesis of EDOT–ECZ–EDOT copolymer on carbon fiber micro-electrodes. Journal of Applied Electrochemistry 2003; 33: 1233.
  • 39. Saraç AS, Sarıoğlan SÖ, Dziomba T, Sezer E. Synthesis and electrocoating of indole–thiophene comonomer on carbon fiber microelectrode, and surface topography by AFM. European Polymer Journal 2007; 43: 3392.
  • 40. Cebeci FÇ, Sezer E, Saraç AS. Synthesis and electrochemical characterization of bis (3,4-ethylene-dioxythiophene)-(4,4′-dinonyl-2,2′- bithiazole) comonomer. Electrochimica Acta 2007; 52: 2158.
  • 41. Sezer E, Heinze J. Voltammetric, EQCM, and in situ conductivity studies of 3, 6-bis (2-thienyl)-N-ethyl carbazole. Electrochimica Acta, 2006; 51: 3668.
  • 42. Roncali J. Conjugated poly (thiophenes): synthesis, functionalization, and applications. Chemical Reviews 1992; 92: 711-738.
  • 43. Bergman J. Synthesis of 3-substituted indoles starting from isatin. Acta Chimica Scandinavica 1971; 25: 4.
  • 44. Benhida R, Lecubin F., Fourrey JL, Castellanos LR, Quintero L. Synthesis of 6-allyl and 6-heteroarylindoles by palladium catalysed Stille cross-coupling reaction. Tetrahedron Letters 1999; 40: 5701.
  • 45. ASTM F42-93; Standard Test Methods for Conductivity Type of Extrinsic Semiconducting Materials. Annual Book ASTM Standard 1997. Last Updated: Aug 16, 2017.
  • 46. Keithley Application Note Series. Measuring the Resistivity and Determining the Conductivity Type of Semiconductor Materials Using a Four-Point Collinear Probe and the Model 6221 DC and AC Current 2005; Source Number 2615.
  • 47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al., Gaussian 03, Gaussian Inc., Pittsburgh PA, Revision 2003: B:04.
  • 48. Janietz S, Bradley DDC, Grell MM, Giebeler C, Inbasekaran M et al. Electrochemical determination of the ionization potential and electron affinity of poly (9, 9-dioctylfluorene) Applied Physical Letter 1998; 73 (17): 2453.
  • 49. Vorotyntsev MA, Zinovyeva VA, Konev DV. Mechanisms of Electropolymerization and Redox Activity: Fundamental Aspects, in: Electropolymerization: Concepts, Materials and Applications, Cosnier S, Karyakin AA (Editors). Weinheim, Germany: Wiley-VCH, 2010, pp.27–50.
  • 50. Nalwa HS. (Ed.), Handbook of Organic Conductive Molecules and Polymer, John Wiley: New York, 1997, V2, pp.157.
  • 51. Skompska M, Szkurlat A. The influence of the structural defects and microscopic aggregation of poly (3-alkylthiophenes) on electrochemical and optical properties of the polymer films. Electrochimica Acta 2001; 46: 4007.
  • 52. Jiang X, Harima Y, Yamashita K, Tada Y, Ohshita J et al. Doping-induced change of carrier mobilities in poly (3-hexylthiophene) films with different stacking structures. Chemistry and Physics Letters 2002; 364: 616.
  • 53. Jiang X, Patil R, Harima Y, Ohsita J, Kunai A. Influences of self-assembled structure on mobilities of charge carriers in π-conjugated polymers. Journal Physics Chemisty B 2005; 109: 221.
  • 54. Visy C, Lukkari J, Kankare J. A thermodynamic approach to the interpretation of anodic and cathodic doping of poly (3-methylthiophene). Journal Electroanalytical Chemistry 1991; 319: 85.
  • 55. Girija TC, Sangaranarayanan MV. Investigation of polyaniline-coated stainless-steel electrodes for electrochemical supercapacitors. Synthetic Metals 2006; 156 (2-4): 244-250.
  • 56. Waltman RJ, Diaz AF, Bargon J. Substituent Effects in the Electropolymerization of Aromatic Heterocyclic Compound Journal of Physical Chemistry 1984; 88 (19): 4343-4346.
  • 57. Jackowska K, Kudelski A, Bukowska J. Spectroelectrochemical and EPR determination of the number of electrons transferred in redox process in electroactive polymers polyindole films. Electrochimica Acta 1994; 39 (10): 1365-1368.
  • 58. Talbi H, Monard G, Loos M, Billaud D. Theoretical study of indole polymerization. Journal of Molecular Structure: Theochem 1998; 434: 129-134.
  • 59. Talbi H, Monard G, Loos M., Billaud D. Theoretical investigation of the monomer reactivity in polyindole derivatives. Synthetic Metals 1999; 101: 115-116.
  • 60. Dubnikova F, Lifshitz A. Isomerization of indole. Quantum chemical calculations and kinetic modelling. Journal Physical Chemistry A 2001; 105: 3605-3614.
  • 61. Yurtsever M, Yurtsever E. A DFT study of polymerization mechanism of indole. Polymer 2002; 43; 6019-6025.
  • 62. 62. Saraç AS, Sezer E, Ustamehmetoğlu B. Oxidative polymerization of N substituted carbazoles. Polymer Advanced Technologies 1997; 8 (9): 556-562.
  • 63. Waltman RJ, Bargon J. Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications. Canadian Journal Chemistry 1986; 64: 76.
  • 64. Skotheim TA. Handbook of Conducting Polymers; Marcel Dekker Inc. New York, 1986.
  • 65. Agata T, Cybulski H, Chmielewski MJ, Bukowskaa J, Skompska M. Electrochemical and spectroscopic characterization of poly(1,8- diaminocarbazole): Part I. Electropolymerization and determination of the polymer structure by FTIR studies and DFT calculations. Electrochimica Acta 2009; 54: 4743.
APA ERGİNER M, Ustamehmetoglu B, Sezer E (2022). Synthesis and characterization of a series of conducting polymers based on indole and carbazole. , 1677 - 1693. 10.55730/1300-0527.3471
Chicago ERGİNER Mehmet,Ustamehmetoglu Belkis,Sezer Esma Synthesis and characterization of a series of conducting polymers based on indole and carbazole. (2022): 1677 - 1693. 10.55730/1300-0527.3471
MLA ERGİNER Mehmet,Ustamehmetoglu Belkis,Sezer Esma Synthesis and characterization of a series of conducting polymers based on indole and carbazole. , 2022, ss.1677 - 1693. 10.55730/1300-0527.3471
AMA ERGİNER M,Ustamehmetoglu B,Sezer E Synthesis and characterization of a series of conducting polymers based on indole and carbazole. . 2022; 1677 - 1693. 10.55730/1300-0527.3471
Vancouver ERGİNER M,Ustamehmetoglu B,Sezer E Synthesis and characterization of a series of conducting polymers based on indole and carbazole. . 2022; 1677 - 1693. 10.55730/1300-0527.3471
IEEE ERGİNER M,Ustamehmetoglu B,Sezer E "Synthesis and characterization of a series of conducting polymers based on indole and carbazole." , ss.1677 - 1693, 2022. 10.55730/1300-0527.3471
ISNAD ERGİNER, Mehmet vd. "Synthesis and characterization of a series of conducting polymers based on indole and carbazole". (2022), 1677-1693. https://doi.org/10.55730/1300-0527.3471
APA ERGİNER M, Ustamehmetoglu B, Sezer E (2022). Synthesis and characterization of a series of conducting polymers based on indole and carbazole. Turkish Journal of Chemistry, 46(5), 1677 - 1693. 10.55730/1300-0527.3471
Chicago ERGİNER Mehmet,Ustamehmetoglu Belkis,Sezer Esma Synthesis and characterization of a series of conducting polymers based on indole and carbazole. Turkish Journal of Chemistry 46, no.5 (2022): 1677 - 1693. 10.55730/1300-0527.3471
MLA ERGİNER Mehmet,Ustamehmetoglu Belkis,Sezer Esma Synthesis and characterization of a series of conducting polymers based on indole and carbazole. Turkish Journal of Chemistry, vol.46, no.5, 2022, ss.1677 - 1693. 10.55730/1300-0527.3471
AMA ERGİNER M,Ustamehmetoglu B,Sezer E Synthesis and characterization of a series of conducting polymers based on indole and carbazole. Turkish Journal of Chemistry. 2022; 46(5): 1677 - 1693. 10.55730/1300-0527.3471
Vancouver ERGİNER M,Ustamehmetoglu B,Sezer E Synthesis and characterization of a series of conducting polymers based on indole and carbazole. Turkish Journal of Chemistry. 2022; 46(5): 1677 - 1693. 10.55730/1300-0527.3471
IEEE ERGİNER M,Ustamehmetoglu B,Sezer E "Synthesis and characterization of a series of conducting polymers based on indole and carbazole." Turkish Journal of Chemistry, 46, ss.1677 - 1693, 2022. 10.55730/1300-0527.3471
ISNAD ERGİNER, Mehmet vd. "Synthesis and characterization of a series of conducting polymers based on indole and carbazole". Turkish Journal of Chemistry 46/5 (2022), 1677-1693. https://doi.org/10.55730/1300-0527.3471