Yıl: 2022 Cilt: 30 Sayı: 6 Sayfa Aralığı: 2031 - 2043 Metin Dili: İngilizce DOI: 10.55730/1300-0632.3922 İndeks Tarihi: 08-12-2022

Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels

Öz:
In this paper, we present error probability analysis for single-input single-output (SISO) and asymmetric dual-branch networks with additive white generalized Gaussian noise (AWGGN) over millimeter-wave (mmW) fluctuating two-ray (FTR) fading channels. Then, we examine the error probability evaluation of a SISO system with imperfect phase errors over mmW FTR fading channels. The probability density function (PDF) approach is employed for the error probability performance evaluation and the novel PDF of the asymmetric dual-branch system over Nakagami-m/mmW FTR fading channels is obtained. Specifically, closed-form expressions are derived for the error probability of the SISO and asymmetric dual-branch networks. The derived error expressions facilitate in effectively evaluating the performance of considered networks in the presence of AWGGN and imperfect phase noise with optimal fading parameters and modulation type. The theoretical derivations are extensively confirmed through exact simulations.
Anahtar Kelime: Millimeter-wave communication fluctuating two-ray fading channels additive white generalized Gaussian noise imperfect phase errors

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Samsung Research. The Next Hyper-Connected Experience for All. Technical Report, 2021.
  • [2] Agrawal DP, Zeng Q-A. Introduction to Wireless and Mobile Systems. Hoboken, NJ, USA: Wiley, 2011.
  • [3] Rappaport TS. Wireless Communication. Chennai, India: Pearson, 2011.
  • [4] Guo YQ, Pan YM, Zheng SY, Lu K. A Singly-fed dual-band microstrip antenna for microwave and millimeter-wave applications in 5G wireless communication. IEEE Transactions on Vehicular Technology 2021; 70 (6): 5419-5430. doi: 10.1109/TVT.2021.3070807
  • [5] Wang Y, Zou W, Tao Y. Analog precoding designs for millimeter wave communication systems. IEEE Transactions on Vehicular Technology 2018; 67 (12): 11733-11745. doi: 10.1109/TVT.2018.2874633
  • [6] Cai W, Wang P, Li Y, Zhang Y, Vucetic B. Deployment optimization of uniform linear antenna arrays for a two-path millimeter wave communication system. IEEE Communications Letters 2015; 19 (4): 669-672. doi: 10.1109/LCOMM.2015.2401570
  • [7] Aykin I, Krunz M. Efficient beam sweeping algorithms and initial access protocols for millimeter-wave networks. IEEE Transactions on Wireless Communications 2020; 19 (4): 2504-2514. doi: 10.1109/TWC.2020.2965926
  • [8] Muhammad NA, Seman N, Apandi NIA, Li Y. Energy harvesting in sub-6 GHz and millimeter wave hybrid networks. IEEE Transactions on Vehicular Technology 2021; 70 (5): 4471-4484. doi: 10.1109/TVT.2021.3068956
  • [9] Wen L, Yu Z, Zhu L, Zhou J. High-gain dual-band resonant cavity antenna for 5G millimeter-wave communications. IEEE Antennas and Wireless Propagation Letters 2021; 20 (10): 1878-1882. doi: 10.1109/LAWP.2021.3098390
  • [10] Wang Y, Zou W. Low complexity hybrid precoder design for millimeter wave MIMO systems. IEEE Communications Letters 2019; 23(7): 1259-1262. doi: 10.12676/j.cc.2019.02.003
  • [11] Abbas WB, Cuba FG, Zorzi M. Millimeter wave receiver efficiency: a comprehensive comparison of beamforming schemes with low resolution ADCs. IEEE Transactions on Wireless Communications 2017; 6 (12): 8131-8146. doi: 10.1109/TWC.2017.2757919
  • [12] Muhammad NA, Apandi NIA, Li Y, Seman N. Uplink performance analysis for millimeter wave cellular networks with clustered users. IEEE Transactions on Vehicular Technology 2020; 69 (6): 6178-6188. doi: 10.1109/TVT.2020.2980291
  • [13] Bilim M,Kapucu N. Average symbol error rate analysis of QAM schemes over millimeter wave fluctuating two-ray fading channels. IEEE Access 2019; 7 (1): 105746-105754. doi: 10.1109/ACCESS.2019.2932147
  • [14] Al-Hmood H, Al-Raweshidy HS. Performance analysis of mmWave communications with selection combin- ing over fluctuating-two ray fading model. IEEE Communications Letters 2021; 25(8): 2531-2535. doi: 10.1109/LCOMM.2021.3087524
  • [15] Maric A, Kaljic E, Njemcevic P. An alternative statistical characterization of TWDP fading model. MDPI Sensors 2021; 21 (22): 7513. doi:10.3390/s21227513
  • [16] Olyaee M, Eslami M, Haghighat J. Performance of maximum ratio combining of fluctuating two-ray (FTR) mmWave channels for 5G and beyond communications. Transaction on Emerging Telecommunication Technology 2019; 30: e3601. doi:10.1002/ett.3601
  • [17] Zeng W, Zhang J, Chen S, Peppas KP, Ai B. Physical layer security over fluctuating two-ray fading channels. IEEE Transactions on Vehicular Technology 2018; 67 (9): 8949-8953. doi: 10.1109/TVT.2018.2842126
  • [18] Soury H, Yilmaz F, Alouini M-S. Average bit error probability of binary coherent signaling over generalized fading channels subject to additive generalized Gaussian noise. IEEE Communication Letters 2012; 16(6): 785-788. doi: 10.1109/LCOMM.2012.040912.112612
  • [19] Beaulieu NC, Young DJ. Designing time-hopping ultrawide bandwidth receivers for multiuser interference environ- ments. Proc. IEEE 2009; 97 (2): 255-284. doi: 10.1109/JPROC.2008.2008782
  • [20] Chiani M, Giorgetti A. Coexistence between UWB and narrowband wireless communication systems. Proc. IEEE 2009; 97 (2): 231-254. doi: 10.1109/JPROC.2008.2008778
  • [21] Mathur A, Bhatnagar MR, Panigrahi BK. Performance evaluation of PLC under the combined effect of background and impulsive noises. IEEE Communication Letters 2015; 19 (7): 1117-1120. doi: 10.1109/LCOMM.2015.2429129
  • [22] Beaulieu NC, Bartoli G, Marabissi D, Fantacci R. The structure and performance of an optimal continuous-time detector for Laplace noise. IEEE Communication Letters 2013; 17 (6): 1065-1068. doi: 10.1109/LCOMM.2013.042313.130164
  • [23] Thompson MW, Chang H-S. Coherent detection in Laplace noise. IEEE Transactions on Aerospace and Electronic Systems 1994; 30 (2): 452-461. doi: 10.1109/7.272267
  • [24] Shao H, Beaulieu NC. An investigation of block coding for Laplacian noise. IEEE Transactions on Wireless Communications 2012; 11 (7): 2362-2372. doi: 10.1109/TWC.2012.051712.101143
  • [25] Bilim M. Approximate ASER analysis of MIMO TAS/MRC networks over Weibull fading channels. Annals of Telecommunications 2021; 76:73-81. doi: 10.1007/s12243-020-00810-2
  • [26] Bilim M. Uplink communications with AWGGN over non-homogeneous fading channels. Physical Communication 2020; 39 (101047): 1-5. doi: 10.1016/j.phycom.2020.101047
  • [27] Salahat E, Saleh H. Novel unified analysis of orthogonal space-time block codes over generalized-K and AWGGN MIMO networks. In: IEEE 81st Vehicular Technology Conference (VTC Spring); Glasgow, Scotland; 2015; pp. 1-4. doi: 10.1109/VTCSpring.2015.7145958
  • [28] Song X, Yang F, Cheng J, Al-Dhahir N, Xu Z. Subcarrier phase-shift keying systems with phase errors in lognormal turbulence channels. Journal of Lightwave Technology 2015; 33 (9): 1896-1904. doi: 10.1109/JLT.2015.2398847
  • [29] Jang Y, Jeong J, Yoon D. Bit error floor of MPSK in the presence of phase error. IEEE Transactions on Vehicular Technology 2016; 65 (5): 3782-3786 doi: 10.1109/TVT.2015.2437792
  • [30] Khanna H. On the unified error performance of PSK modulation schemes over mm-wave wireless channels affected by carrier phase synchronization errors. International Journal of Communication Systems 2021; 34 (7): e4712. doi:10.1002/dac.4712
  • [31] Bilim M. Performance analysis of a mmW SISO system with AWGGN over fluctuating two-ray fading channels. In: 10th International Radio-Scientific Union (URSI); Gebze (online), Turkey; 2021; pp. 1-3. (in Turkish with an abstract in English).
  • [32] Romero-Jerez JM, Lopez-Martinez FJ, Paris JF, Goldsmith AJ. The fluctuating two-ray fading model: statistical characterization and performance analysis. IEEE Transaction on Communication 2017; 16 (7): 4420 4432. doi: 10.1109/TWC.2017.2698445
  • [33] Zhang J, Zeng W, Li X, Sun Q, Peppas KP. New results on the fluctuating two-ray model with arbitrary fad- ing parameters and its applications. IEEE Transaction on Vehicular Technology 2018; 67 (3): 2766-2770. doi: 10.1109/TVT.2017.2766784
  • [34] Gradshteyn IS, Ryzhik IM. Table of Integrals, Series and Products. San Diego, CA, USA: Academic, 2007.
  • [35] Bilim M. Dual-branch SC wireless systems with HQAM for beyond 5G over η − μ fading channels. Peer-to-Peer Networking and Applications 2021; 14: 305-318. doi: 10.1007/s12083-020-00946-x
  • [36] Khatalin S. Performance of dual-branch selection combining diversity systems in non-identical Nakagami-q (Hoyt) fading channels IET Communications 2010; 4 (5): 585-595. doi: 10.1049/iet-com.2009.0445
  • [37] Bilim M. Error analyse of generalized Gaussian noise for alternate Rician fading. Nigde Omer Halisdemir Journal Engineering Science 2021; 10 (1): 84-90. (in Turkish with an abstract in English). doi: 10.28948/ngumuh.765657
  • [38] Gappmair W, Nistazakis HE. Subcarrier PSK performance in terrestrial FSO links impaired by gamma-gamma fading, pointing errors, and phase noise. Journal of Lightwave Technology, 2017; 35 (9): 1624-1632. doi: 10.1109/JLT.2017.2685678
  • [39] Prudnikov AP, Brychkov YA, Marichev OI. Integrals, and series: special functions (Vol. 2). New York, USA: Gordon and Breach Science, 1986.
APA BİLİM M (2022). Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels. , 2031 - 2043. 10.55730/1300-0632.3922
Chicago BİLİM Mehmet Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels. (2022): 2031 - 2043. 10.55730/1300-0632.3922
MLA BİLİM Mehmet Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels. , 2022, ss.2031 - 2043. 10.55730/1300-0632.3922
AMA BİLİM M Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels. . 2022; 2031 - 2043. 10.55730/1300-0632.3922
Vancouver BİLİM M Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels. . 2022; 2031 - 2043. 10.55730/1300-0632.3922
IEEE BİLİM M "Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels." , ss.2031 - 2043, 2022. 10.55730/1300-0632.3922
ISNAD BİLİM, Mehmet. "Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels". (2022), 2031-2043. https://doi.org/10.55730/1300-0632.3922
APA BİLİM M (2022). Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels. Turkish Journal of Electrical Engineering and Computer Sciences, 30(6), 2031 - 2043. 10.55730/1300-0632.3922
Chicago BİLİM Mehmet Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels. Turkish Journal of Electrical Engineering and Computer Sciences 30, no.6 (2022): 2031 - 2043. 10.55730/1300-0632.3922
MLA BİLİM Mehmet Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels. Turkish Journal of Electrical Engineering and Computer Sciences, vol.30, no.6, 2022, ss.2031 - 2043. 10.55730/1300-0632.3922
AMA BİLİM M Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels. Turkish Journal of Electrical Engineering and Computer Sciences. 2022; 30(6): 2031 - 2043. 10.55730/1300-0632.3922
Vancouver BİLİM M Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels. Turkish Journal of Electrical Engineering and Computer Sciences. 2022; 30(6): 2031 - 2043. 10.55730/1300-0632.3922
IEEE BİLİM M "Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels." Turkish Journal of Electrical Engineering and Computer Sciences, 30, ss.2031 - 2043, 2022. 10.55730/1300-0632.3922
ISNAD BİLİM, Mehmet. "Error analysis of SISO and dual-branch communications with generalized Gaussian noise over FTR fading channels". Turkish Journal of Electrical Engineering and Computer Sciences 30/6 (2022), 2031-2043. https://doi.org/10.55730/1300-0632.3922