Yıl: 2021 Cilt: 11 Sayı: 1 Sayfa Aralığı: 119 - 131 Metin Dili: Türkçe DOI: 10.21597/jist.715459 İndeks Tarihi: 20-12-2022

Otonom Sualtı Araçlarında Genel Tasarım İlkeleri

Öz:
Avrupa Birliği’nde yasallaşmakta olan ve zorunlu hale getirilen sualtı yaşamı ve kirliliğinin düzenli olarak kontrol edilmesine yönelik çalışmalarda sualtı araçları kullanılmaktadır. Dünyanın farklı yerlerinde yaşanılan kimyasal sızıntıların okyanuslarda neden olduğu çevre felaketler, özellikle bölgemizde denizlerde artan petrol ve doğalgaz arama çalışmaları sondaj platformlarında kullanılan sualtı araçlarının önemini arttırmıştır. Sualtı araçları açık deniz balıkçılığı ve batık gemi incelemelerinde önemli bir role sahiptirler. Bu çalışmada sualtı araçlarında genel olarak kullanılan çevre birimler, algılayıcılar, işleticiler ve bunların aracın denetimi ve seyir planlaması üzerindeki etkileri, insansız sualtı araçlarında otonom hareketin aşamaları verilmiştir. Bu kapsamda, tasarım sırasında ölçüt olarak karşımıza çıkan genel hedef, görev ve amaçlar açıklanmıştır. Ardından bunları sağlamak için gerekli mekanik, elektronik ve yazılım geliştirmeye yönelik tasarımlarda dikkat edilmesi gereken temel kavramlara değinilmiştir. Örnek olarak, Kocaeli Üniversitesi Mühendislik Fakültesi Elektronik ve Haberleşme Bölümünde geliştirilen sualtı aracı (SA) Lucky Fin’in dinamiğine ait bazı parametrelerin nasıl belirleneceği ele alınmıştır. İnsansız sualtı araçları; robot kinematiği, hidrodinamik, modelleme, kontrol, görüntü işleme, elektronik kart tasarımı, sensör teknolojileri, gömülü sistemler, sürücü sistemleri, güç yönetimi, aydınlatma, sualtı haberleşmesi, imge işleme algoritmaları, seyir planlama gibi birçok konuyu bir arada kullanmayı ve disiplinler arası eşgüdümü gerektiren bir çalışma alanıdır. Makale, araç tasarımında karşılaşılan kavramlar ve tasarım ilkelerini genel hatlarıyla okuyucuya vermeyi amaçlamaktadır.
Anahtar Kelime: Sualtı aracı tasarımı otonom araçlar kontrol.

General Design Principles For Autonomous Underwater Vehicles

Öz:
Underwater vehicles are used for regular control of underwater life and pollution, which are legalized and made mandatory in the European Union. In addition to environmental disasters caused by chemical leaks to oceans in different parts of the World, increasing oil and natural gas exploration studies in the seas, especially in our region, have increased the importance of underwater vehicles that are used in drilling platforms. Underwater vehicles have an important role in offshore fishing and sunken ship investigations. In this study, the peripheral units, sensors, operators used in underwater vehicles and their effects on vehicle control and cruise planning and the stages of autonomous movement in unmanned underwater vehicles are given. In this context, the general goals, tasks and objectives that we encounter as criteria during the design stage are explained. Then, the basic concepts that should be considered in designs for mechanical, electronic and software development required to achieve these are mentioned. As an example, it has been discussed how to determine some dynamics parameters of the underwater vehicle Lucky Fin developed in the Electronics and Communication Department of Kocaeli University Faculty of Engineering. Unmanned underwater vehicles use many subjects such as robot kinematics, hydrodynamics, modeling, control, image processing, electronic card design, sensor technologies, embedded systems, drive systems, power management, lighting, underwater communication, image processing algorithms, navigation planning which require an interdisciplinary coordination. The article aims to contribute in providing the reader an overview of the generic concepts and design principles encountered in vehicle design.
Anahtar Kelime: Underwater vehicle design autonomous vehicles control.

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • Bo H, Ke Y, Bingsen L, Chunyun R, Jing L, 2009. Design and Reliability Analysis of Data Logging and Management System for AUV, WASE International Conference on Information Engineering, Vol.1, s. 75-78, Taiyuan
  • Casele P R, Strong G T, Holland Smith D J, Bown K J, Madahar B K, 2012. Emerging Technologies with the Potential to Impact Safety in Defence, 7th IET International Conference on System Safety, incorporating the Cyber Security Conference, s 1-9, Edinburg.
  • Çubukçu A, Kuncan M, Kaplan K, & Ertunc, HM 2015. Development of a voice-controlled home automation using Zigbee module, 23rd Signal Processing and Communications Applications Conference (SIU), IEEE 1801-1804.
  • Doğan H, Kaplan K, Kuncan M & Ertunç HM, 2015. Araç Süspansiyon Sistemi Kontrolüne PID ve Bulanık Mantık Yaklaşımları - PID and Fuzzy Logic Approach to Vehicle Suspension System Control, TOK 2015, Denizli; Türkiye, 699-704.
  • Dumlu D, Istefanopulos Y, 1995. Design of an Adaptive Controller for Submersibles via Multimodel Gain Scheduling, Ocean Engng, Vol. 22, No. 6, pp. 593-614.
  • Eng Y H, Lau W S, Low E, Seet G G L and Chin C S, 2009. Estimation of The Hydrodynamic Coefficients of an ROV using Free Decay Pendulum Motion, Engineering Letters, 3rd Edition.
  • Ergan A F, 2014. Sualtı Deney Platformu için Donanım ve Kullanıcı Arayüzünün Tasarlanarak Gerçeklenmesi,Yüksek Lisans Tezi, Kocaeli Üniversitesi.
  • Eriksen C C, Osse T J, Light R D, Wen T, Lehman T W, Sabin P L, Ballard J W, Chiodi A M, 2001. Seaglider: A Long-Range Autonomous Underwater Vehicle for Oceanographic Research. IEEE Journal of Oceanic Engineering, VOL. 26, NO. 4, 424-435.
  • Ferri G, Ferreira F, Djapic V, 2015. Boosting the Talent of New Generations of Marine Engineers Through Robotics Competitions in Realistic Environments: the SAUC-E and EuRathlon Experience, Oceans, s.1-6,. Genova.
  • Ferri G, Ferreira F, Djapic V, 2017 Multi-domain robotics competitions: The CMRE experience from SAUC-E to the European Robotics League Emergency Robots, , s.1-7,. Aberdeen
  • Hansen R K, 1993. An Acoustic Camera for 3D Underwater Imaging. IEE Acoustic Sensing and Imaging, Conference Publication No: 369, 99-102.
  • Harsdorf S, Janssen M, Reuter R, Wachowicz B, Willkomm R, 1998. Lidar as part of an ROV-based Sensor Network for Detection of Chemical Pollutants on the Seafloor. IEEE 1250-1253.
  • Jiang M, Xu K, Xu X, Shi L, Yu X, Liu P, 2019. Range Noise Level Estimation of HY-2b Radar Altimeter and Its Comparison With Jason-2 And Jason-3 Altimeters, IGARSS - IEEE International Geoscience and Remote Sensing Symposium, s. 8312-8315, Yokohama.
  • Karakoç H, Erin K, Çağıran R, Kuncan M, Kaplan K & Ertunç H M, 2015. Uçak yükseklik kontrolünde PD kontrolör ve bulanık mantık kontrolör performans karşılaştırması- The Performance Comparison of PD Controller and Fuzzy Logic Controller for the Aircraft Height Control, TOK 2015, 10-12 Eylül 2015, Denizli; Türkiye, 1020-1026.
  • Lindsay J A, Coles B, Babb I, Tomey D, 1998. Acoustical/Optical Technology Integration with a Manned Submersible and a ROV for the Investigation of a Radioactive Materials Disposal Site and a Sewage Diffuser Outfall. IEEE 395-400.
  • Poupart M, Benefice P, Plutarque M, 2000. Subaquatic Inspections of EDF (Electricite de France) Dams. IEEE 939-942.
  • Raju S S, Swamy G N, Bharath Y and Nandini, C H N, 2020, Simulation and Performance Analysis of Autonomous Underwater Vehicle using Advanced Control Algorithms, International Conference on Communication and Signal Processing, July 28 - 30, 2020, India, 905-909
  • Ribas D, Palomeras N, Ridao P, Carreras M, Hernandez E, 2007. CTINEUAUV Wins the First SAUC- E Competition, IEEE International Conference on Robotics and Automation, Roma,s.10-14.
  • Shi X, Xiong H, Wnag C, Chang Z, 2005. A New Model of Fuzzy CMAC Network with Application to the Motion Control of AUV. Proceedings of IEEE International Conference on Mechatronics and Automation, 2173-2178.
  • Satria D, Wiryadinata R, Esiswitoyo D P A, Adji M I, Rosyadi I, Listijorini E, Sunardi, 2019. Hydrodynamic Analysis of Remotely Operated Vehicle (ROV) Observation Class using CFD, The International Conference on Aerospace and Aviation, IOP Conf. Ser.: Mater. Sci. Eng, 645
  • Söylemez I, 2015. The Importance Of Aerodynamic Design in Vehicles and Analysis With Ansys Fluent, Karadeniz Technical University, Mechanical Engineering Department Graduation Study, Turkey
  • Wang J S, Lee C G, 2003. Self-Adaptive Recurrent Neuro-Fuzzy Control of an Autonomous Unerwater Vehicle. IEEE Transactions on Robotics and Automation, 19/2, 283-295.
  • Yılmaz S, 2012. Derinlik Ve Yön Kontrol Uygulamaları İçin Deney Platformu Tasarımı, Tübitak 1002 Projesi, Proje No:111e294, Süre:12 Ay, Yürütücü: Serhat YILMAZ.
  • Yılmaz S, Kılcı S B, Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi, 2020. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10/2, 888 – 899.
  • Yılmaz G, 4 Serbestlik Dereceli Sualtı Aracının Tam Dinamik Modelinin Elde Edilmesi Ve Kontrol Uygulaması,2020. Doktora Tez İzleme Dönem Raporu, Danışman: Serhat YILMAZ, KOÜ FBE, Kocaeli
  • Zhang Y, Baggeroer A B, Bellingham J G, 2001. Spectral-Feature Classification of Oceanographic Processes Using an Autonomous Underwater Vehicle. IEEE Jornal of Oceanic Engineering, 26, 726-741.
APA YILMAZ S, KILCI S (2021). Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. , 119 - 131. 10.21597/jist.715459
Chicago YILMAZ Serhat,KILCI Sadettin Burak Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. (2021): 119 - 131. 10.21597/jist.715459
MLA YILMAZ Serhat,KILCI Sadettin Burak Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. , 2021, ss.119 - 131. 10.21597/jist.715459
AMA YILMAZ S,KILCI S Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. . 2021; 119 - 131. 10.21597/jist.715459
Vancouver YILMAZ S,KILCI S Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. . 2021; 119 - 131. 10.21597/jist.715459
IEEE YILMAZ S,KILCI S "Otonom Sualtı Araçlarında Genel Tasarım İlkeleri." , ss.119 - 131, 2021. 10.21597/jist.715459
ISNAD YILMAZ, Serhat - KILCI, Sadettin Burak. "Otonom Sualtı Araçlarında Genel Tasarım İlkeleri". (2021), 119-131. https://doi.org/10.21597/jist.715459
APA YILMAZ S, KILCI S (2021). Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(1), 119 - 131. 10.21597/jist.715459
Chicago YILMAZ Serhat,KILCI Sadettin Burak Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11, no.1 (2021): 119 - 131. 10.21597/jist.715459
MLA YILMAZ Serhat,KILCI Sadettin Burak Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.11, no.1, 2021, ss.119 - 131. 10.21597/jist.715459
AMA YILMAZ S,KILCI S Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 11(1): 119 - 131. 10.21597/jist.715459
Vancouver YILMAZ S,KILCI S Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 11(1): 119 - 131. 10.21597/jist.715459
IEEE YILMAZ S,KILCI S "Otonom Sualtı Araçlarında Genel Tasarım İlkeleri." Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11, ss.119 - 131, 2021. 10.21597/jist.715459
ISNAD YILMAZ, Serhat - KILCI, Sadettin Burak. "Otonom Sualtı Araçlarında Genel Tasarım İlkeleri". Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11/1 (2021), 119-131. https://doi.org/10.21597/jist.715459