Yıl: 2022 Cilt: 8 Sayı: 4 Sayfa Aralığı: 583 - 599 Metin Dili: İngilizce DOI: 10.28979/jarnas.1109288 İndeks Tarihi: 22-12-2022

The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae)

Öz:
Algae are plant organisms that produce organic molecules in the aquatic environment and absorb carbon. Since algae are photosynthetic organisms, they give oxygen to the environment. Algae, one of the most important living resources of the seas, are used in many fields such as food, agriculture, cosmetics, medicine, pharmacy, industry and also as a biofuel source thanks to the metabolites they store in the cell. In the study carried out to determine the effects of nitrogen and phosphorus limitations at different salinity rates on the chlorophyll a, dry weight, optical density, protein, lipid and fatty acid contents of the microalgae Tetraselmis suecica from the class Chlorodendrophyceae cultured in the laboratory conditions, at ‰15, 30 and 45 salinity rates 50% N and 50% P reductions were applied. The lowest growth was detected in the culture containing 50% N(-). The highest lipid ratio was determined as 39.8±1% in the 50% N(-) group, while the closest ratio was 34.6% in the 50% P(-) group. The highest polyunsaturated fatty acids were determined in the group containing 50% P(-) at all salinity values. The protein value was determined as 22.3% in the 50% P(-) group and 15.7% in the 50% N(-) group at ‰30 salinity.
Anahtar Kelime: Tetraselmis suecica growth salinity lipid protein fatty acids N limitation P limitation

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adarme-Vega, T. C., Thomas-Hall, S. R., Lim, D. K., & Schenk, P. M. (2014). Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp. Marine drugs, 12(6), 3381- 3398. doi: https://doi.org/10.3390/md12063381
  • Alonso, M., Lago, F. C., Vieites, J. M., & Espiñeira, M. (2012). Molecular characterization of microalgae used in aquaculture with biotechnology potential. Aquaculture International, 20(5), 847-857. doi: https://doi.org/10.1007/s10499-012-9506-8
  • Alsull, M., & Omar, W. M. W. (2012). Responses of Tetraselmis sp. and Nannochloropsis sp. isolated from Penang National Park coastal waters, Malaysia, to the combined influences of salinity, light and nitrogen limitation. In International Conference on Chemical, Ecology and Environmental Sciences (ICEES 2012).
  • Bandarra, N. M., Pereira, P. A., Batista, I., & Vilela, M. H. (2003). Fatty acids, sterols and α tocopherol in Isochrysis galbana. Journal of Food Lipids, 10(1), 25-34. doi: https://doi.org/10.1111/j.1745- 4522.2003.tb00003.x
  • Ben Amotz, A., Tornabene, T. G., & Thomas, W. H. (1985). Chemical profile of selected species of microalgae with emphasis on lipids 1. Journal of Phycology, 21(1), 72-81. doi: https://doi.org/10.1111/j.0022- 3646.1985.00072.x
  • Ben-Amotz, A., & Avron, M. (1983). On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiology, 72(3), 593-597. doi: https://doi.org/10.1104/pp.72.3.593
  • Benitez-Nelson, C. R. (2000). The biogeochemical cycling of phosphorus in marine systems. Earth-Science Reviews, 51(1-4), 109-135. doi: https://doi.org/10.1016/S0012-8252(00)00018-0
  • Borowitzka, M. A., & Borowitzka, L. J. (1988). Micro-algal biotechnology. Cambridge University Press. Brown, M. R., Jeffrey, S. W., & Garland, C. D. (1989). Nutritional aspects of microalgae used in mariculture; a literature review. Hobart, Tas., CSIRO Marine Laboratories. doi: https://doi.org/10.25919/5bbb9b2e71b6e
  • Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151. doi: https://doi.org/10.1016/j.cep.2009.03.006
  • Durmaz, Y., & Pirinç, P. (2017). Bazı deniz mikroalglerinin (Nannochloropsis oculata, Tetraselmis chuii ve Dunaliella salina) kültüründe tuzluluk konsantrasyonunun büyüme ve pigment yapısına etkisinin araştırılması Investigation of the effect of salinity concentration on growth and pigment composition on the some marine microalgae (Nannochloropsis oculata. Ege Journal of Fisheries and Aquatic Sciences, 34(1), 75-80. doi:10.12714/egejfas.2017.34.1.11
  • Fabregas, J., Herrero, C., Cabezas, B., & Abalde, J. (1986). Biomass production and biochemical composition in mass cultures of the marine microalga Isochrysis galbana Parke at varying nutrient concentrations. Aquaculture, 53(2), 101-113. doi:https://doi.org/10.1016/0044-8486(86)90280-2
  • Fidalgo, J. P., Cid, A., Torres, E., Sukenik, A., & Herrero, C. (1998). Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture, 166(1-2), 105-116. doi: https://doi.org/10.1016/S0044- 8486(98)00278-6
  • Fidalgo, J., Cid, A., Abalde, J., & Herrero, C. (1995). Culture of the marine diatom Phaeodactylum tricornutum with different nitrogen sources: growth, nutrient conversion and biochemical composition. Cahiers de biologie marine, 36(3), 165-173.
  • Gökpınar, Ş., & Cirik, S. (1991). Phaeodactylum tricornitum’un geniş ölçekli yığın kültürleri üzerine tuzluluk faktörünün etkisi. Ege Ü. Su Ürünleri F. Eğitiminin, 10, 12-14.
  • Gouveia, L., Marques, A. E., Da Silva, T. L., & Reis, A. (2009). Neochloris oleabundans UTEX# 1185: a suitable renewable lipid source for biofuel production. Journal of Industrial Microbiology and Biotechnology, 36(6), 821-826. doi: https://doi.org/10.1007/s10295-009-0559-2
  • Griffiths, M. J., van Hille, R. P., & Harrison, S. T. (2012). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. Journal of Applied Phycology, 24(5), 989-1001. doi: https://doi.org/10.1007/s10811-011-9723-y
  • Grobbelaar, J. U. (2004). Handbook of microalgal culture: biotechnology and applied phycology. Israel: Wiley-Blackwell.
  • Gu, N., Lin, Q., Li, G., Tan, Y., Huang, L., & Lin, J. (2012). Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Engineering in life sciences, 12(6), 631-637. doi: https://doi.org/10.1002/elsc.201100204
  • Guillard, R.R.L. (1973). Division Rates. In: Stein, R.J. (Ed.) Handbook of phycological methods: culture methods and growth measurements (No. 589.3 S84). Cambridge Univ. Press, N. Y., 283-311.
  • Guschina, I. A., & Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in lipid research, 45(2), 160-186. doi: https://doi.org/10.1016/j.plipres.2006.01.001
  • Ichihara, K. I., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31(5), 535-539. doi:http://dx.doi.org/10.1007/BF02522648
  • Kaur, S., Sarkar, M., Srivastava, R. B., Gogoi, H. K., & Kalita, M. C. (2012). Fatty acid profiling and molecular characterization of some freshwater microalgae from India with potential for biodiesel production. New Biotechnology, 29(3), 332-344. doi: https://doi.org/10.1016/j.nbt.2011.10.009
  • Khozin-Goldberg, I., & Cohen, Z. (2006). The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry, 67(7), 696- 701. doi: https://doi.org/10.1016/j.phytochem.2006.01.010
  • Kim, G., Lee, C. H., & Lee, K. (2016). Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation. Korean Journal of Chemical Engineering, 33(1), 230-237. doi: https://doi.org/10.1007/s11814-015-0089-8
  • Knothe, G. (2008). “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy & Fuels, 22(2), 1358-1364. doi: https://doi.org/10.1021/ef700639e
  • Maltsev, Y., Maltseva, I., Maltseva, S., Kociolek, J. P., & Kulikovskiy, M. (2021). A new species of freshwater algae Nephrochlamys yushanlensis sp. nov.(Selenastraceae, Sphaeropleales) and its lipid accumulation during nitrogen and phosphorus starvation. Journal of Phycology, 57(2), 606-618. doi: https://doi.org/10.1111/jpy.13116
  • Mutlu, Y. B., Isik, O., Uslu, L., Koç, K., & Durmaz, Y. (2011). The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae). African Journal of Biotechnology, 10(3), 453-456. doi:10.5897/AJB10.1390.
  • Oh, S. H., Han, J. G., Kim, Y., Ha, J. H., Kim, S. S., Jeong, M. H., ... & Lee, H. Y. (2009). Lipid production in Porphyridium cruentum grown under different culture conditions. Journal of bioscience and bioengineering, 108(5), 429-434. doi: https://doi.org/10.1016/j.jbiosc.2009.05.020
  • Piorreck, M., & Pohl, P. (1984). Formation of biomass, total protein, chlorophylls, lipids and fatty acids in green and blue-green algae during one growth phase. Phytochemistry, 23(2), 217-223. doi: https://doi.org/10.1016/S0031-9422(00)80305-2
  • Plaxton, W. C., & Tran, H. T. (2011). Metabolic adaptations of phosphate-starved plants. Plant physiology, 156(3), 1006-1015. doi:https://doi.org/10.1104/pp.111.175281
  • Paytan, A., & McLaughlin, K. (2007). The oceanic phosphorus cycle. Chemical reviews, 107(2), 563-576. doi: https://doi.org/10.1021/cr0503613
  • Pugkaew, W., Meetam, M., Yokthongwattana, K., Leeratsuwan, N., & Pokethitiyook, P. (2019). Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica. Journal of Applied Phycology, 31(2), 969-979. doi: https://doi.org/10.1007/s10811-018-1619-7
  • Renaud, S. M., & Parry, D. L. (1994). Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. Journal of Applied Phycology, 6(3), 347-356. doi: https://doi.org/10.1007/BF02181949
  • Roopnarain, A., Gray, V. M., & Sym, S. D. (2014). Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresource technology, 156, 408-411. doi: https://doi.org/10.1016/j.biortech.2014.01.092
  • Mirón, A. S., Garcia, M. C. C., Gómez, A. C., Camacho, F. G., Grima, E. M., & Chisti, Y. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3), 287-297. doi: https://doi.org/10.1016/S1369-703X(03)00072-X
  • Shifrin, N. S., & Chisholm, S. W. (1981). Phytoplankton lipids: Interspecific differences and effects of nitrate, silicate and light dark cycles 1. Journal of phycology, 17(4), 374-384. doi: https://doi.org/10.1111/j.1529-8817.1981.tb00865.x
  • Siaut, M., Heijde, M., Mangogna, M., Montsant, A., Coesel, S., Allen, A., ... & Bowler, C. (2007). Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene, 406(1-2), 23-35. doi: https://doi.org/10.1016/j.gene.2007.05.022
  • Sukenik, A., Carmeli, Y., & Berner, T. (1989). Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. 1. Journal of Phycology, 25(4), 686-692. doi: https://doi.org/10.1111/j.0022-3646.1989.00686.x
  • Sisman-Aydin, G. (2019). Mikroalg teknolojisi ve çevresel kullanımı. Harran Üniversitesi Mühendislik Dergisi, 4(1), 81-92.
  • Takagi, M., & Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of bioscience and bioengineering, 101(3), 223-226. doi: https://doi.org/10.1263/jbb.101.223
  • Uslu, L., Içik, O., Koç, K., & Göksan, T. (2011). The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology, 10(3), 386-389.
  • Venckus, P., Cicchi, B., & Chini Zittelli, G. (2021). Effects of medium salinity on growth and biochemical composition of the green microalga Tetraselmis suecica. Journal of Applied Phycology, 33(6), 3555- 3563. doi: https://doi.org/10.1007/s10811-021-02560-7
  • Vonshak, A. (Ed.). (1997). Spirulina platensis arthrospira: physiology, cell-biology and biotechnology. CRC press.
  • Vonshak, A., & Tomaselli, L. (2000). Arthrospira (Spirulina): systematics and ecophysioIogy. In The ecology of cyanobacteria (pp. 505-522). Springer, Dordrecht. doi:https://doi.org/10.1007/0-306-46855-7_18
  • Ying, L., Kang-sen, M., & Shi-chun, S. (2002). Effects of harvest stage on the total lipid and fatty acid composition of fourCylindrotheca strains. Chinese Journal of Oceanology and Limnology, 20(2), 157- 161. doi: https://doi.org/10.1007/BF0284965
  • Xu, N., Zhang, X., Fan, X., Han, L., & Zeng, C. (2001). Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp.(Eustigmatophyta). Journal of Applied Phycology, 13(6), 463-469. doi:https://doi.org/10.1023/A:1012537219198
  • Xu, X. Q., & Beardall, J. (1997). Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake. Phytochemistry, 45(4), 655-658. doi: https://doi.org/10.1016/S0031- 9422(96)00868-0
  • Zhang, T., Gong, H., Wen, X., & Lu, C. (2010). Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. Journal of Plant Physiology, 167(12), 951-958. doi: https://doi.org/10.1016/j.jplph.2009.12.020
APA sisalan c, Uslu L (2022). The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae). , 583 - 599. 10.28979/jarnas.1109288
Chicago sisalan cananur,Uslu Leyla The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae). (2022): 583 - 599. 10.28979/jarnas.1109288
MLA sisalan cananur,Uslu Leyla The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae). , 2022, ss.583 - 599. 10.28979/jarnas.1109288
AMA sisalan c,Uslu L The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae). . 2022; 583 - 599. 10.28979/jarnas.1109288
Vancouver sisalan c,Uslu L The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae). . 2022; 583 - 599. 10.28979/jarnas.1109288
IEEE sisalan c,Uslu L "The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae)." , ss.583 - 599, 2022. 10.28979/jarnas.1109288
ISNAD sisalan, cananur - Uslu, Leyla. "The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae)". (2022), 583-599. https://doi.org/10.28979/jarnas.1109288
APA sisalan c, Uslu L (2022). The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae). Journal of advanced research in natural and applied sciences (Online), 8(4), 583 - 599. 10.28979/jarnas.1109288
Chicago sisalan cananur,Uslu Leyla The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae). Journal of advanced research in natural and applied sciences (Online) 8, no.4 (2022): 583 - 599. 10.28979/jarnas.1109288
MLA sisalan cananur,Uslu Leyla The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae). Journal of advanced research in natural and applied sciences (Online), vol.8, no.4, 2022, ss.583 - 599. 10.28979/jarnas.1109288
AMA sisalan c,Uslu L The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae). Journal of advanced research in natural and applied sciences (Online). 2022; 8(4): 583 - 599. 10.28979/jarnas.1109288
Vancouver sisalan c,Uslu L The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae). Journal of advanced research in natural and applied sciences (Online). 2022; 8(4): 583 - 599. 10.28979/jarnas.1109288
IEEE sisalan c,Uslu L "The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae)." Journal of advanced research in natural and applied sciences (Online), 8, ss.583 - 599, 2022. 10.28979/jarnas.1109288
ISNAD sisalan, cananur - Uslu, Leyla. "The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae)". Journal of advanced research in natural and applied sciences (Online) 8/4 (2022), 583-599. https://doi.org/10.28979/jarnas.1109288