Yıl: 2022 Cilt: 28 Sayı: 3 Sayfa Aralığı: 128 - 140 Metin Dili: Türkçe DOI: 10.5505/tbdhd.2022.15013 İndeks Tarihi: 26-12-2022

AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI

Öz:
Akut inmeden sonra ortaya çıkan başlıca nütrisyonel sorunlar malnütrisyon, disfaji ve kas kaybıdır. Nütrisyonel tedavi, akut iskemik ve hemorajik inme tedavi basamakları arasında mümkün olduğunca erken yer almalıdır. Malnütrisyon akut inme sırasında nadir değildir, ama daha sık karşılaşılan, inme hastasında nöroloji yoğun bakım, inme ünitesi ve hastane yatışı sırasında hızla gelişen malnütrisyon ve kas kaybıdır. Bilinç etkilenmesi ve yutma bozukluğu beslenme yetersizliğine, dehidratasyona, aspirasyon ve pnömoniye yol açar. İnmeden sonra yutmanın oral ve farengeal fazları ile larengeal elevasyon bozulur. Medulla oblongata, pons, pariyetal operkül, insula, anterior ve superior temporal alanlar, presentral ve postsentral gyrus, singulat korteks lezyonlarında disfaji bildirilmiştir. Özellikle sağ hemisfer lezyonlarında disfaji, yutma apraksisi, öksürük refleksi kaybı, valleküler göllenme ve aspirasyon daha sık olur. Her inme hastasının yatışının ilk 24 saatinde yutma fonksiyonu açısından yatak başı testler ve ardından enstrümental yöntemlerle değerlendirilmesi gerekir. Gerek varsa enteral nütrisyon, hem malnütrisyon gelişimini hem de kas kaybını önlemek için faydalıdır. İyi beslenen hastalarda hastane yatış boyunca komplikasyon oranları azalmakta, uzun dönemde fonksiyonel iyileşme daha fazla olmaktadır. İnme hastalarını yatırarak takip eden her nöroloji uzmanı enteral nütrisyonu uygun şekilde planlayabilmeli, temel prensiplerine hakim olmalıdır. İnme ile ilişkili kas kaybı hem fizyopatoloji hem de tanı basamakları yönünden sarkopeniden farklılıklar içerir. İnme hastasında BİA, DEXA, ultrasonografi, BT, MR ile ekstremite ve gövde kaslarının kantitatif olarak gösterilmesi tanıda kritiktir. Bugün için inme ile ilişkili kas kaybını önlemenin ve tedavi etmenin yegane yöntemi aktif egzersiz ve nütrisyondur.
Anahtar Kelime: İnme malnütrisyon disfaji enteral nütrisyon.

NUTRITION IN ACUTE STROKE: PROBLEMS AND SOLUTIONS

Öz:
The major consequences of acute stroke are malnutrition, dysphagia and muscle loss. Nutritional treatment should be included in the management protocols of acute ischemic and hemorrhagic stroke as early as possible. Malnutrition prevalence is not rare among acute stroke patients at the time of admission, however it is more common after hospitalisation in neurointensive care, stroke units or inpatient neurology wards together with noticeable muscle loss. Altered mental status and swallowing disturbance may lead to nutritional deficiencies, dehydration, aspiration and pneumonia. In fact, oral and pharyngeal phases of swallow and laryngeal elevation is disturbed after stroke. Dysphagia is caused by lesions in medulla, pons, parietal operculum, insula, anterior and superior temporal regions, precentral and postcentral gyrus, cingulate cortex. Dysphagia, loss of cough reflex, vallecular pooling, swallowing apraxia and aspiration are especially more common in right hemispheric strokes. All stroke patients should be examined for the presence of dysphagia with bedside tests within 24 hours of hospitalization and instrumental assessment later on. Enteral nutrition should be applied, if needed. It prevents the development of malnutrition and muscle loss. Patients who are fed properly have low rates of complications during the hospital stay, and better functional recovery in long term. Neurologists who take care of hospitalized stroked patients, should be able to plan enteral nutrition and master the main principles of the treatment. Stroke related muscle loss differs from sarcopenia in terms of physiopathology and diagnostic work-up. Quantitative demonstration of muscle mass with BIA, DEXA, CT, MR or ultrasonography is crucial for diagnosis. For today, the novel methods for prevention and management of stroke related muscle loss are active exercises and nutrition.
Anahtar Kelime: Stroke malnutrition dysphagia enteral feeding.

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. TÜİK., Ölüm ve Ölüm Nedeni İstatistikleri, 2019. (24.06.2020): https://data.tuik.gov.tr/Bulten/Index?p=Olum-ve-Olum- Nedeni-Istatistikleri-2019-33710.
  • 2. McCoy CE, Langdorf MI, Lotfipour S. American Heart Association/American Stroke Association Deletes Sections from 2018 Stroke Guidelines. West J Emerg Med 2018; 19(6): 947-951.
  • 3. Türkiye Cumhuriyeti Sağlık Bakanlığı Sağlık Hizmetleri Genel Müdürlüğü. Akut iskemik inme tanı ve tedavi rehberi. Ankara; 2020.
  • 4. Corrigan ML, Escuro AA, Celestin J, et al. Nutrition in the stroke patient. Nutr Clin Pract 2011; 26(3): 242-252.
  • 5. Sánchez-Moreno, C, Jiménez-Escrig A, Martín A. Stroke: Roles of B vitamins, homocysteine and antioxidants. Nutr Res Rev 2009; 22(1): 49-67.
  • 6. Mosselman MJ, Kruitwagen CL, Schuurmans MJ, et al, Malnutrition and risk of malnutrition in patients with stroke: Prevalence during hospital stay. J Neurosci Nurs 2013; 45(4): 194-204.
  • 7. Lieber AC, Hong E, Putrino D, et al. Nutrition, energy expenditure, dysphagia, and self-efficacy in stroke rehabilitation: A review of the literature. Brain Sci 2018; 8(12): 218.
  • 8. Cederholm, T, Jensen GL, Correia MITD, et al. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle 2019; 10(1): 207-217.
  • 9. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. British journal of nutrition 1974; 32(1): 77-97.
  • 10. Gong L, Wang Y, Shi J. Enteral nutrition management in stroke patients: A narrative review. Ann Palliat Med 2021; 10(10): 11191-11202.
  • 11. Zhang J, Zhao X, Wang A, et al. Emerging malnutrition during hospitalisation independently predicts poor 3- month outcomes after acute stroke: Data from a Chinese cohort. Asia Pac J Clin Nutr 2015; 24(3): 379-386.
  • 12. Gomes F, Emery PW, Weekes CE. Risk of malnutrition is an independent predictor of mortality, length of hospital stay, and hospitalization costs in stroke patients. J Stroke Cerebrovasc Dis 2016; 25(4): 799-806.
  • 13. Mehta A, De Paola L, Pana TA, et al. The relationship between nutritional status at the time of stroke on adverse outcomes: A systematic review and meta-analysis of prospective cohort studies. Nutr Rev 2022; 80(12): 2275- 2287.
  • 14. Sato K, Inoue T, Maeda K, et al. Undernutrition at admission suppresses post-stroke recovery of trunk function. J Stroke Cerebrovasc Dis 2022; 31(4): 106354.
  • 15. Takizawa C, Gemmell E, Kenworthyet J, al. A systematic review of the prevalence of oropharyngeal dysphagia in stroke, Parkinson's disease, Alzheimer's disease, head injury, and pneumonia. Dysphagia 2016; 31(3): 434-441.
  • 16. Xia W, Zheng C, Zhu S, et al. Does the addition of specific acupuncture to standard swallowing training improve outcomes in patients with dysphagia after stroke? A randomized controlled trial. Clin Rehabil 2016; 30(3): 237- 246.
  • 17. Cohen DL, Roffe C, Beavan J, et al. Post-stroke dysphagia: A review and design considerations for future trials. Int J Stroke 2016; 11(4): 399-411.
  • 18. Dziewas, R, Michou E, Trapl-Grundschober M, et al. European Stroke Organisation and European Society for Swallowing Disorders guideline for the diagnosis and treatment of post-stroke dysphagia. Eur Stroke J 2021; 6(3): LXXXIX-CXV.
  • 19. Mo SJ, Jeong HJ, Han YH, et al. Association of brain lesions and videofluoroscopic dysphagia scale parameters on patients with acute cerebral infarctions. Ann Rehabil Med 2018; 42(4): 560-568.
  • 20. Suntrup S, Kemmling A, Warnecke T, et al. The impact of lesion location on dysphagia incidence, pattern and complications in acute stroke. Part 1: Dysphagia incidence, severity and aspiration. Eur J Neurol 2015; 22(5): 832-838.
  • 21. Suntrup-Krueger S, Kemmling A, Warnecke T, et al. The impact of lesion location on dysphagia incidence, pattern and complications in acute stroke. Part 2: Oropharyngeal residue, swallow and cough response, and pneumonia. Eur J Neurol 2017; 24(6): 867-874.
  • 22. Shimizu A, Fujishima I, Maeda K, et al. Delayed dysphagia may be sarcopenic dysphagia in patients after stroke. J Am Med Dir Assoc 2021; 22(12): 2527-2533.e1.
  • 23. Mann G, Hankey GJ, Cameron D. Swallowing function after stroke: Prognosis and prognostic factors at 6 months. Stroke 1999; 30(4): 744-748.
  • 24. Antonios N, Carnaby-Mann G, Crary M, et al. Analysis of a physician tool for evaluating dysphagia on an inpatient stroke unit: The modified Mann Assessment of Swallowing Ability. J Stroke Cerebrovasc Dis 2010; 19(1): 49-57.
  • 25. Martino R, Silver F, Teasell R, et al. The Toronto Bedside Swallowing Screening Test (TOR-BSST): Development and validation of a dysphagia screening tool for patients with stroke. Stroke 2009; 40(2): 555-561.
  • 26. Edmiaston J, Connor LT, Steger-May K, et al. A simple bedside stroke dysphagia screen, validated against videofluoroscopy, detects dysphagia and aspiration with high sensitivity. J Stroke Cerebrovasc Dis 2014; 23(4): 712- 716.
  • 27. Trapl M, Enderle P, Nowotny M, et al. Dysphagia bedside screening for acute-stroke patients: The Gugging Swallowing Screen. Stroke 2007; 38(11): 2948-2952.
  • 28. Turner-Lawrence DE, Peebles M, Price MF, et al. A feasibility study of the sensitivity of emergency physician dysphagia screening in acute stroke patients. Ann Emerg Med 2009; 54(3): 344-348.e1.
  • 29. Suiter DM, Leder SB, Clinical utility of the 3-ounce water swallow test. Dysphagia 2008; 23(3): 244-250.
  • 30. Arsava EM, Aydoğdu İ, Güngör L, et al. Nutritional approach and treatment in patients with stroke, an expert opinion for Turkey. Turkish Journal of Neurology 2018; 24(3): 226- 242.
  • 31. Guillén-Solà A, Marco E, Martínez-Orfila J, et al. Usefulness of the volume-viscosity swallow test for screening dysphagia in subacute stroke patients in rehabilitation income. NeuroRehabilitation 2013; 33(4): 631-638.
  • 32. Balcerak P, Corbiere S, Zubal R, et al. Post-stroke dysphagia: prognosis and treatment-A systematic review of rct on interventional treatments for dysphagia following subacute stroke. Front Neurol 2022; 13: 823189.
  • 33. Qian S, Zhang X, Wang T, et al. Effects of Comprehensive Swallowing Intervention on Obstructive Sleep Apnea and Dysphagia After Stroke: A Randomized Controlled Trial. J Stroke Cerebrovasc Dis 2022; 31(8): 106521.
  • 34. Zhang W, Pan H, Zong Y, et al. Respiratory muscle training reduces respiratory complications and improves swallowing function after stroke: A systematic review and meta-analysis. Arch Phys Med Rehabil 2022; 103(6): 1179- 1191.
  • 35. Bath PM, Lee HS, Everton LF, Swallowing therapy for dysphagia in acute and subacute stroke. Cochrane Database Syst Rev 2018; 10(10): Cd000323.
  • 36. Vose A, Nonnenmacher J, Singer ML, et al. Dysphagia management in acute and sub-acute stroke. Curr Phys Med Rehabil Rep 2014; 2(4): 197-206.
  • 37. Hammad AB, Elhamrawy EA, Abdel-Tawab H, et al. Transcranial Magnetic Stimulation Versus Transcutaneous Neuromuscular Electrical Stimulation in Post Stroke Dysphagia: A Clinical Randomized Controlled Trial. J Stroke Cerebrovasc Dis 2022; 31(8): 106554.
  • 38. Tan SW, Wu A, Cheng LJ, et al. The effectiveness of transcranial stimulation in improving swallowing outcomes in adults with poststroke dysphagia: A systematic review and meta-analysis. Dysphagia 2022; 37(6): 1796-1813.
  • 39. Alamer A, Melese H, Nigussie F. Effectiveness of Neuromuscular Electrical Stimulation on Post-Stroke Dysphagia: A Systematic Review of Randomized Controlled Trials. Clin Interv Aging 2020; 15: 1521-1531.
  • 40. Rosenberg IH. Sarcopenia: Origins and clinical relevance. The Journal of nutrition 1997; 127(5): 990S-991S.
  • 41. Cruz-Jentoft, AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019; 48(1): 16-31.
  • 42. Nakanishi N, Okura K, Okamura M, et al. Measuring and monitoring skeletal muscle mass after stroke: A review of current methods and clinical applications. J Stroke Cerebrovasc Dis 2021; 30(6): 105736.
  • 43. Kokura, Y, Kato M, Kimoto K, et al. Relationship between energy intake and changes in thigh echo intensity during the acute phase of stroke in older patients with hemiplegia. Med Princ Pract 2021; 30(5): 493-500.
  • 44. Katsuki M, Kakizawa Y, Nishikawa A, et al. Temporal muscle and stroke-a narrative review on current meaning and clinical applications of temporal muscle thickness, area, and volume. Nutrients 2022; 14(3): 687.
  • 45. Scherbakov N, von Haehling S, Anker SD, et al. Stroke induced sarcopenia: Muscle wasting and disability after stroke. Int J Cardiol 2013; 170(2): 89-94.
  • 46. Ryan AS, Dobrovolny CL, Smith GV, et al. Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Arch Phys Med Rehabil 2002; 83(12): 1703-1707.
  • 47. Carda S, Cisari C, Invernizzi M. Sarcopenia or muscle modifications in neurologic diseases: A lexical or patophysiological difference? Eur J Phys Rehabil Med 2013; 49(1): 119-130.
  • 48. Carin-Levy G, Greig C, Young A, et al. Longitudinal changes in muscle strength and mass after acute stroke. Cerebrovasc Dis 2006; 21(3): 201-207.
  • 49. Nozoe M, Kanai M, Kubo H, et al. Changes in quadriceps muscle thickness in acute non-ambulatory stroke survivors. Top Stroke Rehabil 2016; 3(1): 8-14.
  • 50. Badjatia N, Sanchez S, Judd G, et al. Neuromuscular Electrical Stimulation and High-Protein Supplementation After Subarachnoid Hemorrhage: A Single-Center Phase 2 Randomized Clinical Trial. Neurocrit Care 2021; 35(1): 46- 55.
  • 51. English C, McLennan H, Thoirs K, et al. Loss of skeletal muscle mass after stroke: A systematic review. Int J Stroke 2010; 5(5): 395-402. Türk Beyin Damar Hastalıkları Dergisi 2022; 28(3): 128-140
  • 52. Su Y, Yuki M, Otsuki M. Prevalence of stroke-related sarcopenia: A systematic review and meta-analysis. J Stroke Cerebrovasc Dis 2020; 29(9): 105092.
  • 53. Jørgensen L. Jacobsen BK. Changes in muscle mass, fat mass, and bone mineral content in the legs after stroke: Aa 1 year prospective study. Bone 2001; 28(6): 655-659.
  • 54. Hunnicutt JL, Gregory CM. Skeletal muscle changes following stroke: A systematic review and comparison to healthy individuals. Top Stroke Rehabil 2017; 24(6): 463- 471.
  • 55. Yoshimura Y, Wakabayashi H, Bise T, et al. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin Nutr 2018; 37(6 Pt A): 2022-2028.
  • 56. Abe T, Iwata K, Yoshimura Y, et al. Low muscle mass is associated with walking function in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 2020; 29(11): 105259.
  • 57. Matsushita T, Nishioka S, Taguchi S, et al. Sarcopenia as a predictor of activities of daily living capability in stroke patients undergoing rehabilitation. Geriatr Gerontol Int 2019; 19(11): 1124-1128.
  • 58. Shiraishi A., Yoshimura Y, Wakabayashi H, et al. Prevalence of stroke-related sarcopenia and its association with poor oral status in post-acute stroke patients: Implications for oral sarcopenia. Clin Nutr 2018; 37(1): 204-207.
  • 59. Li W, Yue T, Liu Y. New understanding of the pathogenesis and treatment of stroke-related sarcopenia. Biomed Pharmacother 2020; 131: 110721.
  • 60. Papadatou MC. Sarcopenia in hemiplegia. J Frailty Sarcopenia Falls 2020; 5(2): 38-41.
  • 61. Negm AM, Lee J, Hamidian R, et al. Management of sarcopenia: A network meta-analysis of randomized controlled trials. J Am Med Dir Assoc 2022; 23(5): 707-714.
  • 62. Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J Nutr Health Aging 2018; 22(10): 1148-1161.
  • 63. Martínez-Arnau FM, Fonfría-Vivas R, Cauli O. Beneficial effects of leucine supplementation on criteria for sarcopenia: A systematic review. Nutrients 2019; 11(10): 2504.
  • 64. Park MK, Lee SJ, Choi E, et al. The effect of branched chain amino acid supplementation on stroke-related sarcopenia. Front Neurol 2022; 13: 744945.
  • 65. Oktaviana J, Zanker J, Vogrin S, et al. The effect of β- hydroxy-β-methylbutyrate (HMB) on sarcopenia and functional frailty in older persons: A systematic review. The journal of nutrition, health & aging 2019; 23(2): 145-150.
  • 66. Lo JHT, Pong KU, Yiu T, et al. Sarcopenia: Current treatments and new regenerative therapeutic approaches. Journal of Orthopaedic Translation 2020; 23: 38-52.
  • 67. Kakehi S, Wakabayashi H, Inuma H, et al. Rehabilitation nutrition and exercise therapy for darcopenia. World J Mens Health 2022; 40(1): 1-10.
  • 68. Doley J. Enteral nutrition overview. Nutrients 2022; 14(11): 2180.
  • 69. Mizuma A, Netsu S, Sakamoto M. Effect of early enteral nutrition on critical care outcomes in patients with acute ischemic stroke. J Int Med Res 2021; 49(11): 3000605211055829.
  • 70. Ikezawa K, Hirose M, Maruyamaet T, al. Effect of early nutritional initiation on post-cerebral infarction discharge destination: A propensity-matched analysis using machine learning. Nutr Diet 2022; 79(2): 247-254.
  • 71. Wu C, Zhu X, Zhouet X, et al. Intermittent tube feeding for stroke patients with dysphagia: A meta-analysis and systematic review. Ann Palliat Med 2021; 10(7): 7406- 7415.
  • 72. Koukiasa P, Bitzani M, Papaioannou V, et al. Resting energy expenditure in critically ill patients with spontaneous intracranial hemorrhage. JPEN J Parenter Enteral Nutr 2015; 39(8): 917-921.
  • 73. Singer P, Blaser AR, Bergeret MM, et al. ESPEN Guideline on Clinical Nutrition in the Intensive Care Unit. Clin Nutr 2019; 38(1): 48-79.
  • 74. Bendavid I, Lobo DN, Barazzoni R, et al. The centenary of the Harris-Benedict equations: How to assess energy requirements best? Recommendations from the ESPEN expert group. Clin Nutr 2021; 40(3): 690-701.
  • 75. Wang D, Lin Z, Xie L, et al. Impact of early protein provision on the mortality of acute critically ill stroke patients. Nutr Clin Pract 2022; 37(4): 861-868.
  • 76. Orhun G. Enteral ürünler. Klinik Gelişim 2011; 24: 5-9.
  • 77. Kuppinger DD, Rittler P, Hartl WH, et al. Use of gastric residual volume to guide enteral nutrition in critically ill patients: a brief systematic review of clinical studies. Nutrition 2013; 29(9): 1075-1079.
  • 78. Güngör L, Özeke L, Türkel Y, et al. Beyin damar hastalarında aralıklı ve sürekli enteral nütrisyon uygulamalarının karşılaştırılması. Türk Nöroloji Dergisi, 2011; 17(2): 76-82.
  • 79. Wirth R., Smoliner C, Jägeret M, et al. Guideline clinical nutrition in patients with stroke. Experimental & Translational Stroke Medicine 2013; 5(1): 1-11.
  • 80. van den Bemt PM, Cusell MBI, Overbeeke PW, et al. Quality improvement of oral medication administration in patients with enteral feeding tubes. Qual Saf Health Care 2006; 15(1): 44-47.
  • 81. Joos E, Verbeke S, Mehuys E, et al. Medication administration via enteral feeding tube: A survey of pharmacists' knowledge. Int J Clin Pharm 2016; 38(1): 10- 15.
  • 82. Peterson JJ, Hoehns JD. Administration of direct oral anticoagulants through enteral feeding tubes. Journal of Pharmacy Technology 2016; 32(5): 196-200.
  • 83. Dennis M, Lewis S, Cranswick G, et al. FOOD: A multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke. Health Technol Assess 2006; 10(2): iii-iv, ix-x, 1-120.
  • 84. Pradelli L, Graf S, Pichard C, et al. Supplemental parenteral nutrition in intensive care patients: A cost saving strategy. Clin Nutr 2018; 37(2): 573-579.
  • 85. Simmer K, Rakshasbhuvankar A, Deshpande G. Standardised parenteral nutrition. Nutrients 2013; 5(4): 1058-1070.
  • 86. Singer P, Berger MM, van den Berghe G, et al. ESPEN Guidelines on Parenteral Nutrition: Intensive care. Clin Nutr 2009; 28(4): 387-400.
APA GUNGOR I (2022). AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI. , 128 - 140. 10.5505/tbdhd.2022.15013
Chicago GUNGOR IBRAHIM LEVENT AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI. (2022): 128 - 140. 10.5505/tbdhd.2022.15013
MLA GUNGOR IBRAHIM LEVENT AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI. , 2022, ss.128 - 140. 10.5505/tbdhd.2022.15013
AMA GUNGOR I AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI. . 2022; 128 - 140. 10.5505/tbdhd.2022.15013
Vancouver GUNGOR I AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI. . 2022; 128 - 140. 10.5505/tbdhd.2022.15013
IEEE GUNGOR I "AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI." , ss.128 - 140, 2022. 10.5505/tbdhd.2022.15013
ISNAD GUNGOR, IBRAHIM LEVENT. "AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI". (2022), 128-140. https://doi.org/10.5505/tbdhd.2022.15013
APA GUNGOR I (2022). AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI. Türk Beyin Damar Hastalıkları Dergisi, 28(3), 128 - 140. 10.5505/tbdhd.2022.15013
Chicago GUNGOR IBRAHIM LEVENT AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI. Türk Beyin Damar Hastalıkları Dergisi 28, no.3 (2022): 128 - 140. 10.5505/tbdhd.2022.15013
MLA GUNGOR IBRAHIM LEVENT AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI. Türk Beyin Damar Hastalıkları Dergisi, vol.28, no.3, 2022, ss.128 - 140. 10.5505/tbdhd.2022.15013
AMA GUNGOR I AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI. Türk Beyin Damar Hastalıkları Dergisi. 2022; 28(3): 128 - 140. 10.5505/tbdhd.2022.15013
Vancouver GUNGOR I AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI. Türk Beyin Damar Hastalıkları Dergisi. 2022; 28(3): 128 - 140. 10.5505/tbdhd.2022.15013
IEEE GUNGOR I "AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI." Türk Beyin Damar Hastalıkları Dergisi, 28, ss.128 - 140, 2022. 10.5505/tbdhd.2022.15013
ISNAD GUNGOR, IBRAHIM LEVENT. "AKUT İNMEDE NÜTRİSYON: SORUNLAR VE ÇÖZÜM YOLLARI". Türk Beyin Damar Hastalıkları Dergisi 28/3 (2022), 128-140. https://doi.org/10.5505/tbdhd.2022.15013