Yıl: 2022 Cilt: 18 Sayı: 4 Sayfa Aralığı: 425 - 434 Metin Dili: İngilizce DOI: 10.18466/cbayarfbe.1063777 İndeks Tarihi: 26-12-2022

A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill

Öz:
Aluminium-based composite materials are frequently preferred in many new-generation engineering applications due to their high strength, wear and corrosion resistance, improvement of mechanical properties, machinability, and low density. Mechanical alloying is essential in producing composites with high properties in powder metallurgy, which is one of the composite material production methods. In this study, the deformation of AA7075 powder was investigated with a three-dimensional ball mill designed and produced for use in mechanical alloying processes. In the milling processes, three different rotational speeds (150, 200 and 250 rpm), three different ball to powder ratios (5:1, 10:1 and 20:1) and three different milling times (30, 60 and 90 min) were used. The particle deformation was evaluated by particle size analysis and powder structure examination. The obtained results were analysed with analysis of variance, regression method, three-dimensional graphics, optical microscope and scanning electron microscope (SEM) images. When the results were examined, the maximum deformation and powder size among the selected experimental parameters were obtained at 150 rpm rotational speed, 20:1 ball to powder ratio, and 90 min.
Anahtar Kelime: Powder Metallurgy AA7075 Three-Dimensional Ball Mill.

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Panwar, N, Chauhan, A. 2018. Fabrication methods of particulate reinforced Aluminium metal matrix composite-A review. Materials Today: Proceedings; 5(2): 5933–5939.
  • [2]. Sharma, AK, Bhandari, R, Aherwar, A, Rimašauskiene, R, Pinca-Bretotean, C. 2020. A study of advancement in application opportunities of aluminum metal matrix composites. Materials Today: Proceedings; 26,: 2419–2424.
  • [3]. Imran, M, Khan, ARA. 2019. Characterization of Al-7075 metal matrix composites: A review. Journal of Materials Research and Technology; 8(3): 3347–3356.
  • [4]. Kaczmar, JW, Pietrzak, K, Wlosiński, W. 2000. Production and application of metal matrix composite materials. Journal of Materials Processing Technology; 106(1–3): 58–67.
  • [5]. Balokhonov, R, Romanova, V, Kulkov, A. 2020. Microstructure-based analysis of deformation and fracture in metal-matrix composite materials. Engineering Failure Analysis; 110: 104412.
  • [6]. Hao, XN, Zhang, HP, Zheng, RX, Zhang, YT, Ameyama, K, Ma, CL. 2014. Effect of mechanical alloying time and rotation speed on evolution of CNTs/Al-2024 composite powders. Transactions of Nonferrous Metals Society of China (English Edition); 24(7): 2380–2386.
  • [7]. Pérez-Bustamante, R, Pérez-Bustamante, F, Estrada-Guel, I, Licea-Jiménez, L, Miki-Yoshida, M, Martínez-Sánchez, R. 1970. Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying. Materials Characterization; 75: 13–19.
  • [8]. Karabulut, H, Türkmen, M. 2017. Effect of the amount of Si and aging durations in Al2024-Si alloyed composites produced by powder metallurgy method. Omer Halisdemir University Journal of Engineering Sciences; 6(1): 226–231.
  • [9]. Korucu, S, Soy, G. 2019. An Investigation on the Effects of Tungsten Carbide and Grafen Reinforcements to Mechanical Properties in the Aluminium Matrix Composites. Düzce University Journal of Science and Technology; 7(3): 1466–1487.
  • [10]. Taştan, M, Gökozan, H, Çavdar, PS, Soy, G, Çavdar, U. 2019. Analysis of artificial aging with induction and energy costs of 6082 Al and 7075 Al materials. Revista de Metalurgia; 55(1): 1–7.
  • [11]. Xia, H, Zhang, L, Zhu, Y, Li, N, Sun, Y, Zhang, J, Ma, H. 2020. Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering. International Journal of Minerals, Metallurgy and Materials; 27(9): 1295–1300.
  • [12]. Pickens, JR. 1981. Aluminium powder metallurgy technology for high-strength applications. Journal of Materials Science; 16(6): 1437–1457.
  • [13]. Suryanarayana, C. 2001. Mechanical alloying and milling. Progress in Materials Science; 46(1–2): 1–184.
  • [14]. Soy, G, Korucu, S. 2022. Investigations On The Mechanical Alloying Properties Of Al 2024 Alloy By Three-Dimensional Ball Mill. Surface Review and Letters.
  • [15]. Ağaoğulları, D, Balcı, Ö, Öveçoğlu, ML. 2017. Effect of milling type on the microstructural and mechanical properties of W-Ni-ZrC-Y2O3 composites. Ceramics International; 43(9): 7106–7114.
  • [16]. Concas, A, Lai, N, Pisu, M, Cao, G. 2006. Modelling of comminution processes in Spex Mixer/Mill. Chemical Engineering Science; 61(11): 3746–3760.
  • [17]. Ebrahimi-Kahrizsangi, R, Abdellahi, M, Bahmanpour, M. 2015. Self-ignited synthesis of nanocomposite powders induced by Spex mills; modeling and optimizing. Ceramics International; 41(2): 3137–3151.
  • [18]. Alam, MA, Ya, HH, Azeem, M, Hussain, P Bin, Salit, MS bin, Khan, R, Arif, S, Ansari, AH. 2020. Modelling and optimisation of hardness behaviour of sintered Al/SiC composites using RSM and ANN: A comparative study. Journal of Materials Research and Technology; 9(6): 14036–14050.
  • [19]. Bor, A, Jargalsaikhan, B, Uranchimeg, K, Lee, J, Choi, H. 2021. Particle morphology control of metal powder with various experimental conditions using ball milling. Powder Technology; 394: 181–190.
  • [20]. Morsi, K, Esawi, A. 2007. Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)-CNT composite powders. Journal of Materials Science; 42(13): 4954–4959.
  • [21]. Canakci, A, Varol, T, Erdemir, F. 2016. The Effect of Flake Powder Metallurgy on the Microstructure and Densification Behavior of B4C Nanoparticle-Reinforced Al–Cu–Mg Alloy Matrix Nanocomposites. Arabian Journal for Science and Engineering; 41(5): 1781–1796.
  • [22]. Almotairy, SM, Boostani, AF, Hassani, M, Wei, D, Jiang, ZY. 2020. Effect of hot isostatic pressing on the mechanical properties of aluminium metal matrix nanocomposites produced by dual speed ball milling. Journal of Materials Research and Technology; 9(2): 1151–1161.
  • [23]. Aksöz, S, Özdemir, AT, Bostan, B. 2013. Alloyed AA2014 aluminium powders synthesized with carbon and determined properties. Journal of the Faculty of Engineering and Architecture of Gazi University; 27(1): 109–115.
  • [24]. Gökmese, H, Bostan, B. 2014. Microstructural characterization and synthesis by mechanochemical method of nano particle Al2O3/B4C ceramic phase. Journal of the Faculty of Engineering and Architecture of Gazi University; 29(2): 289–297.
  • [25]. Şimşek, İ, Yıldırım, M, Tunçay, T, Özyürek, D, Şimşek, D. 2018. An investigation of Al-SiC composites produced by mechanical alloying/mechanical milling method. Technological Applied Sciences; 13(2): 165–171.
  • [26]. Yu, J, Yang, S, Kim, J, Lee, Y, Lim, KT, Kim, S, Ryu, SS, Jeong, H. 2020. A confidence interval-based process optimization method using second-order polynomial regression analysis. Processes; 8(10): 1206.
  • [27]. Costantino, U, Nocchetti, M, Gorrasi, G, Tammaro, L. Hydrotalcites in nanobiocomposites. In: Lagarón JM (ed) Multifunctional and nanoreinforced polymers for food packaging, Elsevier, 2011, pp 43–85.
  • [28]. Prakash, DS, Mariappan, R, Anand, JV, Sundar, DJ, Dinesh, K. 2018. A review on latest development of aluminium alloy metal matrix composite through powder metallurgy route. International Journal of Mechanical and Production Engineering Research and Development; 2018,: 235–241.
  • [29]. Du, XM, Zheng, KF, Zhao, T, Liu, FG. 2018. Fabrication and characterization of Al 7075 hybrid composite reinforced with graphene and SiC nanoparticles by powder metallurgy. Digest Journal of Nanomaterials and Biostructures; 13(4): 1133–1140.
  • [30]. Feijoo, I, Pena, G, Cristóbal, MJ, Cabeza, M, Rey, P. 2022. Effect of Carbon Nanotube Content and Mechanical Milling Conditions on the Manufacture of AA7075/MWCNT Composites. Metals; 12(6): 1020.
  • [31]. Deaquino-Lara, R, Gutiérrez-Castañeda, E, Estrada-Guel, I, Hinojosa-Ruiz, G, García-Sánchez, E, Herrera-Ramírez, JM, Pérez-Bustamante, R, Martínez-Sánchez, R. 2014. Structural characterization of aluminium alloy 7075-graphite composites fabricated by mechanical alloying and hot extrusion. Materials and Design; 53: 1104–1111.
  • [32]. Salur, E, Aslan, A, Kuntoğlu, M, Acarer, M. 2021. Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route. Advanced Powder Technology; 32(10): 3826–3844.
  • [33]. Razavi, M, Mobasherpour, I. 2014. Production of aluminum nano-composite reinforced by tungsten carbide particles via mechanical milling and subsequent hot pressing. International Journal of Materials Research; 105(11): 1103–1110.
  • [34]. Hernández-Martínez, SE, Cruz-Rivera, JJ, Garay-Reyes, CG, Elias-Alfaro, CG, Martínez-Sánchez, R, Hernández-Rivera, JL. 2015. Application of ball milling in the synthesis of AA 7075- ZrO2 metal matrix nanocomposite. Powder Technology; 284: 40– 46.
  • [35]. Karunanithi, R, Bera, S, Ghosh, KS. 2014. Electrochemical behaviour of TiO2 reinforced Al 7075 composite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology; 190: 133–143.
  • [36]. Ruirui, W, Zheng, Y, Qiushu, L. 2017. Microstructure and mechanical properties of 7075 Al alloy based composites with Al2O3 nanoparticles. International Journal of Cast Metals Research; 30(6): 337–340.
  • [37]. Raj, RR, Yoganandh, J, Saravanan, MSS, Kumar, SS. 2021. Effect of graphene addition on the mechanical characteristics of AA7075 aluminium nanocomposites. Carbon Letters; 31(1): 125– 136.
  • [38]. 3D Ball Mill (3D Reactor). http://www.nagaosystem.co.jp/serviceE.html/ (accessed at 17.09.2021).
  • [39]. Nagaosystem. https://www.nagaosystem.co.jp/ (accessed at 17.09.2021).
  • [40]. Samtaş, G, Korucu, S. 2019. Optimization of cutting parameters for surface roughness in milling of cryogenic treated EN AW 5754 (AlMg3) aluminum alloy. Journal of Polytechnic; 22(3): 665–673.
  • [41]. Samtaş, G, Korucu, S. 2019. The Optimization of Cutting Parameters Using Taguchi Method in Milling of Tempered Aluminum 5754 Alloy. Düzce University Journal of Science and Technology; 7: 45–60.
  • [42]. Aluminium 7075 Alloy Powder. https://nanografi.com/microparticles/aluminum-7075-alloy- powder-purity-99-5-size-325-mesh/ (accessed at 17.09.2021).
APA SOY G, Korucu S (2022). A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill. , 425 - 434. 10.18466/cbayarfbe.1063777
Chicago SOY Gurkan,Korucu Salih A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill. (2022): 425 - 434. 10.18466/cbayarfbe.1063777
MLA SOY Gurkan,Korucu Salih A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill. , 2022, ss.425 - 434. 10.18466/cbayarfbe.1063777
AMA SOY G,Korucu S A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill. . 2022; 425 - 434. 10.18466/cbayarfbe.1063777
Vancouver SOY G,Korucu S A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill. . 2022; 425 - 434. 10.18466/cbayarfbe.1063777
IEEE SOY G,Korucu S "A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill." , ss.425 - 434, 2022. 10.18466/cbayarfbe.1063777
ISNAD SOY, Gurkan - Korucu, Salih. "A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill". (2022), 425-434. https://doi.org/10.18466/cbayarfbe.1063777
APA SOY G, Korucu S (2022). A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18(4), 425 - 434. 10.18466/cbayarfbe.1063777
Chicago SOY Gurkan,Korucu Salih A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18, no.4 (2022): 425 - 434. 10.18466/cbayarfbe.1063777
MLA SOY Gurkan,Korucu Salih A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol.18, no.4, 2022, ss.425 - 434. 10.18466/cbayarfbe.1063777
AMA SOY G,Korucu S A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 2022; 18(4): 425 - 434. 10.18466/cbayarfbe.1063777
Vancouver SOY G,Korucu S A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 2022; 18(4): 425 - 434. 10.18466/cbayarfbe.1063777
IEEE SOY G,Korucu S "A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill." Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18, ss.425 - 434, 2022. 10.18466/cbayarfbe.1063777
ISNAD SOY, Gurkan - Korucu, Salih. "A Study on the Deformation Behavior of AA7075 Powder with Three-Dimensional Ball Mill". Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18/4 (2022), 425-434. https://doi.org/10.18466/cbayarfbe.1063777