Yıl: 2022 Cilt: 52 Sayı: 5 Sayfa Aralığı: 1415 - 1424 Metin Dili: İngilizce DOI: 10.55730/1300-0144.5481 İndeks Tarihi: 27-12-2022

Microglial iron trafficking: new player in brain injury

Öz:
Abstract: Neonatal brain injury is a significant reason of neurodevelopmental abnormalities and long-term neurological impairments. Hypoxic-ischemic encephalopathy and preterm brain injury, including intraventricular hemorrhage are the most common grounds of brain injury for full-term and preterm neonates. The prevalence of hypoxic ischemic encephalopathy varies globally, ranging from 1 to 3.5/1000 live births in high-resource countries and 26/1000 in low-resource countries. Preterm birth’s global incidence is 15 million, a significant reason for infant mortality and morbidity, permanent neurologic problems, and the associated social and economic burden. The widespread neurodevelopmental effects of neonatal brain injury could have an unfavorable impact on a variety of aspects of cognitive, linguistic, behavioral, sensory, and motor functions. Brain injury occurs via various mechanisms, including energy deprivation, excitatory amino acids, mitochondrial dysfunction, reactive oxygen species, and inflammation giving rise to different forms of cell death. The contribution of microglial activity in neonatal brain injury has widely been underlined by focusing on cell death mechanisms since the neuronal death pathways during their development are distinct from those in the adult brain. Iron accumulation and lipid peroxidation cause a relatively novel type of regulated cell death called ferroptosis. Neonates generally have biochemical iron inequalities, and their antioxidant potential is highly restricted, implying that ferroptosis may be significant in pathologic conditions. Moreover, inhaled nitric oxide therapy in infants may lead to microglial inflammation via ferroptosis and neuronal injury in the developing brain. This review article aims to summarize the studies that investigated the association between neonatal brain injury and iron metabolism, with a particular emphasis on the microglial activity and its application to the inhibition of neonatal brain injury.
Anahtar Kelime: Neonatal brain development brain injury in neonates microglia iron metabolism lipid peroxidation ferroptosis

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Gale C, Statnikov Y, Jawad S, Uthaya SN, Modi N et al. Neonatal brain injuries in England: population-based incidence derived from routinely recorded clinical data held in the National Neonatal Research Database. Archives of Disease in Childhood: Fetal & Neonatal Edition 2018; 103(4): F301-F306. doi: 10.1136/archdischild-2017-313707
  • 2. Robertson L, Knight H, Prosser Snelling E, Petch E, Knight M et al. Each baby counts: National quality improvement programme to reduce intrapartum-related deaths and brain injuries in term babies.Seminars in Fetal and Neonatal Medicine 2017; 22(3): 193-198. doi: 10.1016/j.siny.2017.02.001
  • 3. Chakkarapani AA, Aly H, Benders M, Cotten CM, El-Dib M et al. Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Seminars in Fetal and Neonatal Medicine 2021; 26(5): 101256. doi: 10.1016/j.siny.2021.101256
  • 4. Ophelders D, Gussenhoven R, Klein L, Jellema RK, Westerlaken RJJ et al. Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells 2020; 9(8). doi: 10.3390/ cells9081871
  • 5. Marlow N, Shankaran S, Rogers EE, Maitre NL, Smyser CD et al., editors. Neurological and developmental outcomes following neonatal encephalopathy treated with therapeutic hypothermia. Seminars in Fetal and Neonatal Medicine 2021; 26(5):101274. doi: 10.1016/j.siny.2021.101274
  • 6. Manuck TA, Rice MM, Bailit JL, Grobman WA, Reddy UM et al. Preterm neonatal morbidity and mortality by gestational age: a contemporary cohort. American Journal of Obstetrics & Gynecology 2016; 215(1): 103 e101-103 e114. doi: 10.1016/j. ajog.2016.01.004
  • 7. Graham EM, Ruis KA, Hartman AL, Northington FJ, Fox HE. A systematic review of the role of intrapartum hypoxia- ischemia in the causation of neonatal encephalopathy. American Journal of Obstetrics & Gynecology 2008; 199(6): 587-595. doi: 10.1016/j.ajog.2008.06.094
  • 8. Sandoval Karamian AG, Mercimek-Andrews S, Mohammad K, Molloy EJ, Chang T et al. Neonatal encephalopathy: Etiologies other than hypoxic-ischemic encephalopathy. Seminars in Fetal and Neonatal Medicine 2021; 26(5): 101272. doi: 10.1016/j.siny.2021.101272
  • 9. Jary S, Smit E, Liu X, Cowan FM, Thoresen M. Less severe cerebral palsy outcomes in infants treated with therapeutic hypothermia. Acta Paediatrica 2015; 104(12): 1241-1247. doi: 10.1111/apa.13146
  • 10. Davies A, Wassink G, Bennet L, Gunn AJ, Davidson JO. Can we further optimize therapeutic hypothermia for hypoxic- ischemic encephalopathy? Neural Regeneration Research 2019; 14(10): 1678-1683. doi: 10.4103/1673-5374.257512
  • 11. Davidson JO, Dean J M, Fraser M, Wassink G, Andelius TC et al. Perinatal brain injury: mechanisms and therapeutic approaches. Frontiers in Bioscience-Landmark 2018; 23(12): 2204-2226. doi: 10.2741/4700
  • 12. Northington FJ, Chavez-Valdez R, Martin LJ. Neuronal cell death in neonatal hypoxia-ischemia. Annals of Neurology 2011; 69(5): 743-758. doi: 10.1002/ana.22419
  • 13. Hagberg H, Mallard C, Rousset CI, Thornton C. Mitochondria: hub of injury responses in the developing brain. Lancet Neurology 2014; 13(2): 217-232. doi: 10.1016/S1474- 4422(13)70261-8
  • 14. Sun Y, Li T, Xie C, Zhang Y, Zhou K et al. Dichloroacetate treatment improves mitochondrial metabolism and reduces brain injury in neonatal mice. Oncotarget 2016; 7(22): 31708- 31722. doi: 10.18632/oncotarget.9150
  • 15. Nazmi A, Albertsson AM, Rocha-Ferreira E, Zhang X, Vontell R et al. Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury. Frontiers in Neurology 2018; 9: 159. doi: 10.3389/fneur.2018.00159
  • 16. Blomgren K, Zhu C, Hallin U, Hagberg H. Mitochondria and ischemic reperfusion damage in the adult and in the developing brain. Biochemical and Biophysical Research Communications 2003; 304(3): 551-559. doi: 10.1016/s0006-291x(03)00628-4
  • 17. Millar LJ, Shi L, Hoerder-Suabedissen A, Molnar Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Frontiers in Cellular Neuroscience 2017; 11: 78. doi: 10.3389/fncel.2017.00078
  • 18. Fleiss B, Van Steenwinckel J, Bokobza C, I KS, Ross-Munro E et al. Microglia-Mediated Neurodegeneration in Perinatal Brain Injuries. Biomolecules 2021; 11(1): 99. doi: 10.3390/ biom11010099
  • 19. Mallard C, Tremblay ME, Vexler ZS. Microglia and Neonatal Brain Injury. Neuroscience 2019; 405: 68-76. doi: 10.1016/j. neuroscience.2018.01.023
  • 20. Lv Y, Sun B, Lu XX, Liu YL, Li M et al. The role of microglia mediated pyroptosis in neonatal hypoxic-ischemic brain damage. Biochemical and Biophysical Research Communications 2020; 521(4): 933-938. doi: 10.1016/j. bbrc.2019.11.003
  • 21. Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues in Clinical Neuroscience 2012; 14(3): 281-292. doi: 10.31887/ DCNS.2012.14.3/pchaste
  • 22. Draper ES, Zeitlin J, Manktelow BN, Piedvache A, Cuttini M et al. EPICE cohort: two-year neurodevelopmental outcomes after very preterm birth. Archives of Disease in Childhood - Fetal and Neonatal Edition 2020; 105(4): 350. doi: 10.1136/ archdischild-2019-317418
  • 23. Goldin RL, Matson JL. Premature birth as a risk factor for autism spectrum disorder. Developmental Neurorehabilitation 2016; 19(3): 203-206. doi: 10.3109/17518423.2015.1044132
  • 24. Luu TM, Rehman Mian MO, Nuyt AM. Long-Term Impact of Preterm Birth: Neurodevelopmental and Physical Health Outcomes. Clinics in Perinatology 2017; 44(2): 305-314. doi: 10.1016/j.clp.2017.01.003
  • 25. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-1072. doi: 10.1016/j. cell.2012.03.042
  • 26. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cellular and Molecular Life Sciences 2016; 73(11-12): 2195-2209. doi: 10.1007/s00018-016-2194-1
  • 27. Dixon SJ. Ferroptosis: bug or feature? Immunological Reviews 2017; 277(1): 150-157. doi: 10.1111/imr.12533
  • 28. Stockwell B, Angeli JF, Bayir H, I Bush, Conrad M et al Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease Cell 2017; 171: 273- 285. doi: 10.1016/j.cell.2017.09.021
  • 29. Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the American Chemical Society 2014; 136(12): 4551-4556. doi: 10.1021/ja411006a
  • 30. Ratan RR. The Chemical Biology of Ferroptosis in the Central Nervous System. Cell Chemical Biology 2020; 27(5): 479-498. doi: 10.1016/j.chembiol.2020.03.007
  • 31. Foret MK, Lincoln R, Do Carmo S, Cuello AC, Cosa G. Connecting the “Dots”: From Free Radical Lipid Autoxidation to Cell Pathology and Disease. Chemical Reviews 2020; 120(23): 12757-12787. doi: 10.1021/acs.chemrev.0c00761
  • 32. Morris G, Berk M, Carvalho AF, Maes M, Walker AJ et al. Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behavioural Brain Research 2018; 341: 154-175. doi: 10.1021/acs.chemrev.0c00761
  • 33. Xie Y, Hou W, Song X, Yu Y, Huang J et al. Ferroptosis: process and function. Cell Death & Differentiation 2016; 23(3): 369- 379. doi: 10.1038/cdd.2015.158
  • 34. Seiler A, Schneider M, Förster H, Roth S, Wirth EK et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metabolism 2008; 8(3): 237-248. doi: 10.1016/j. cmet.2008.07.005
  • 35. Lee JY, Keep RF, Hua Y, Ernestus RI, Xi G. Deferoxamine reduces early brain injury following subarachnoid hemorrhage. Acta Neurochirurgica Supplement 2011; 112: 101-106. doi: 10.1007/978-3-7091-0661-7_18
  • 36. Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radical Biology and Medicine 2019; 133: 221-233. doi: 10.1016/j.freeradbiomed.2018.09.033
  • 37. Meng H, Li F, Hu R, Yuan Y, Gong G et al. Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition. Brain Research 2015; 1602: 44-52. doi: 10.1016/j. brainres.2014.08.039
  • 38. Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G. Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Translational Stroke Research 2013; 4(5): 546-553. doi: 10.1007/s12975-013-0270-5
  • 39. Vitalakumar D, Sharma A, Flora SJS. Ferroptosis: A potential therapeutic target for neurodegenerative diseases. Journal of Biochemical and Molecular Toxicology 2021; 35(8): e22830. doi: 10.1002/jbt.22830
  • 40. Ryan SK, Zelic M, Han Y, Teeple E, Chen L et al. Microglia ferroptosis is prevalent in neurodegenerative disease and regulated by SEC24B. bioRxiv 2021. doi: 10.1101/2021.11.02.466996
  • 41. Jhelum P, Santos-Nogueira E, Teo W, Haumont A, Lenoel I et al. Ferroptosis Mediates Cuprizone-Induced Loss of Oligodendrocytes and Demyelination. Journal of Neuroscience 2020; 40(48): 9327-9341. doi: 10.1523/ JNEUROSCI.1749-20.2020
  • 42. Wu Y, Song J, Wang Y, Wang X, Culmsee C et al. The Potential Role of Ferroptosis in Neonatal Brain Injury. Frontiers in Neuroscience 2019; 13: 115. doi: 10.3389/fnins.2019.00115
  • 43. Wang Y, Wu Y, Li T, Wang X, Zhu C. Iron Metabolism and Brain Development in Premature Infants. Frontiers in Physiology 2019; 10: 463. doi: 10.3389/fphys.2019.00463
  • 44. Qiu Y, Cao Y, Cao W, Jia Y, Lu N. The Application of Ferroptosis in Diseases. Pharmacological Research 2020; 159: 104919. doi: 10.1016/j.phrs.2020.104919
  • 45. Kazan HH, Urfali-Mamatoglu C, Gunduz U. Iron metabolism and drug resistance in cancer. Biometals 2017; 30(5): 629-641. doi: 10.1007/s10534-017-0037-7
  • 46. Ge C, Zhang S, Mu H, Zheng S, Tan Z et al. Emerging Mechanisms and Disease Implications of Ferroptosis: Potential Applications of Natural Products. Frontiers in Cell and Developmental Biology 2021; 9: 774957. doi: 10.3389/ fcell.2021.774957
  • 47. Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M et al. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Central Science 2017; 3(3): 232- 243. doi: 10.1021/acscentsci.7b00028
  • 48. David S, Jhelum P, Ryan F, Jeong SY, Kroner A. Dysregulation of Iron Homeostasis in the Central Nervous System and the Role of Ferroptosis in Neurodegenerative Disorders. Antioxidants & Redox Signaling 2022; 37(1-3): 150-170. doi: 10.1089/ars.2021.0218
  • 49. Abe N, Nishihara T, Yorozuya T, Tanaka J. Microglia and Macrophages in the Pathological Central and Peripheral Nervous Systems. Cells 2020; 9(9): 2132. doi: 10.3390/ cells9092132
  • 50. Karuppagounder SS, Alin L, Chen Y, Brand D, Bourassa MW et al. N acetylcysteine targets 5 lipoxygenase derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Annals of Neurology 2018; 84(6): 854-872. doi: 10.1002/ ana.25356
  • 51. Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU et al. The Macrophage Iron Signature in Health and Disease. International Journal of Molecular Sciences 2021; 22(16): 8457. doi: 10.3390/ijms22168457
  • 52. Wu Q, Chen W, Sinha B, Tu Y, Manning S et al. Neuroprotective agents for neonatal hypoxic–ischemic brain injury. Drug Discovery Today 2015; 20(11): 1372-1381. doi: 10.1016/j. drudis.2015.09.001
  • 53. Tang D, Kroemer G. Ferroptosis. Current Biology 2020; 30(21): R1292-R1297. doi: 10.1016/j.cub.2020.09.068
  • 54. Ferriero DM. Neonatal brain injury. The New England Journal of Medicine 2004; 351(19): 1985-1995. doi: 10.1056/NEJMra041996
  • 55. Nnah IC, Wessling-Resnick M. Brain Iron Homeostasis: A Focus on Microglial Iron. Pharmaceuticals (Basel) 2018; 11(4): 129. doi: 10.3390/ph11040129
  • 56. Qu W, Cheng Y, Peng W, Wu Y, Rui T et al. Targeting iNOS Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage via Promoting Ferroptosis of M1 Microglia and Reducing Neuroinflammation. Molecular Neurobiology 2022; 59(5): 3124-3139. doi: 10.1007/s12035-022-02788-5
  • 57. Cui Y, Zhang Z, Zhou X, Zhao Z, Zhao R et al. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. Journal of Neuroinflammation 2021; 18(1): 249. doi: 10.1186/s12974-021-02231-x
  • 58. Zhu K, Zhu X, Sun S, Yang W, Liu S et al. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats. Experimental Neurology 2021; 345: 113828. doi: 10.1016/j.expneurol.2021.113828
  • 59. Lin CH, Wu JS, Hsieh PC, Chiu V, Lan CC et al. Wild Bitter Melon Extract Abrogates Hypoxia-Induced Cell Death via the Regulation of Ferroptosis, ER Stress, and Apoptosis in Microglial BV2 Cells. Evidence-Based Complementary and Alternative Medicine 2022; 1072600. doi: 10.1155/2022/1072600
  • 60. Liddell JR, Hilton JB, Kysenius K, Nikseresht S, McInnes LE et al. Microglial ferroptotic stress causes non-cell autonomous neuronal death. bioRxiv 2022. doi: 10.1101/2022.04.28.489869
  • 61. Gao S, Zhou L, Lu J, Fang Y, Wu H et al. Cepharanthine Attenuates Early Brain Injury after Subarachnoid Hemorrhage in Mice via Inhibiting 15-Lipoxygenase-1-Mediated Microglia and Endothelial Cell Ferroptosis. Oxidative Medicine and Cellular Longevity 2022; 4295208. doi: 10.1155/2022/4295208
  • 62. Wang X, Carlsson Y, Basso E, Zhu C, Rousset CI et al. Developmental shift of cyclophilin D contribution to hypoxic- ischemic brain injury. Journal of Neuroscience 2009; 29(8): 2588-2596. doi: 10.1523/JNEUROSCI.5832-08.2009
  • 63. Amici SA, Dong J, Guerau-de-Arellano M. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia. Frontiers Immunology 2017; 8: 1520. doi: 10.3389/ fimmu.2017.01520
  • 64. Singh N, Haldar S, Tripathi AK, Horback K, Wong J et al. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxidants & Redox Signaling 2014; 20(8): 1324-1363. doi: 10.1089/ ars.2012.4931
  • 65. Corna G, Campana L, Pignatti E, Castiglioni A, Tagliafico E et al. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 2010; 95(11): 1814-1822. doi: 10.3324/haematol.2010.023879
  • 66. Urrutia PJ, Borquez DA, Nunez MT. Inflaming the Brain with Iron. Antioxidants (Basel) 2021; 10(1): 61. doi: 10.3390/ antiox10010061
  • 67. Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nature Chemical Biology 2020; 16(3): 278-290. doi: 10.1038/s41589- 019-0462-8
  • 68. Kaur C, Ling EA. Periventricular white matter damage in the hypoxic neonatal brain: role of microglial cells. Progress in Neurobiology 2009; 87(4): 264-280. doi: 10.1016/j. pneurobio.2009.01.003
  • 69. Aral LA, Ergun MA, Engin AB, Borcek AO, Belen HB. Iron homeostasis is altered in response to hypoxia and hypothermic preconditioning in brain glial cells. Turkish Journal of Medical Science 2020; 50(8): 2005-2016. doi: 10.3906/sag-2003-41
  • 70. Rathnasamy G, Ling E-A, Kaur C. Hypoxia inducible factor-1α mediates iron uptake which induces inflammatory response in amoeboid microglial cells in developing periventricular white matter through MAP kinase pathway. Neuropharmacology 2014; 77: 428-440. doi: 10.1016/j.neuropharm.2013.10.024
  • 71. Qian ZM, Mei Wu X, Fan M, Yang L, Du F et al. Divalent metal transporter 1 is a hypoxia inducible gene. Journal of Cellular Physiology 2011; 226(6): 1596-1603. doi: 10.1002/jcp.22485
  • 72. Yang L, Fan M, Du F, Gong Q, Bi ZG et al. Hypoxic preconditioning increases iron transport rate in astrocytes. Biochimica et Biophysica Acta (BBA) 2012; 1822(4): 500-508. doi: 10.1016/j.bbadis.2011.12.004
  • 73. Aral LA, Ergun MA, Bolay H. Cellular iron storage and trafficking are affected by GTN stimulation in primary glial and meningeal cell culture. Turkish Journal of Biology 2021; 45(1): 46-55. doi: 10.3906/biy-2009-1
  • 74. Lai M-Y, Chu S-M, Lakshminrusimha S, Lin H-C. Beyond the inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Pediatrics & Neonatology 2018; 59(1): 15-23. doi:10.1016/j.pedneo.2016.09.011
  • 75. Cole F, Alleyne C, Barks JD, Boyle RJ, Carroll JL et al. NIH Consensus Development Conference statement: inhaled nitric-oxide therapy for premature infants. Pediatrics 2011; 127(2): 363-369. doi: 10.1542/peds.2010-3507
  • 76. Nakanishi H, Suenaga H, Uchiyama A, Kusuda S. Persistent pulmonary hypertension of the newborn in extremely preterm infants: a Japanese cohort study. Archives of Disease in Childhood - Fetal and Neonatal Edition 2018; 103(6): F554. doi: 10.1136/archdischild-2017-313778
  • 77. Charriaut Marlangue C, Bonnin P, Pham H, Loron G, Leger PL et al. Nitric oxide signaling in the brain: a new target for inhaled nitric oxide? Annals of Neurology 2013; 73(4): 442- 448. doi: 10.1002/ana.23842
  • 78. Bonnin P, Leger P-L, Villapol S, Deroide N, Gressens P et al. Dual action of NO synthases on blood flow and infarct volume consecutive to neonatal focal cerebral ischemia. Experimental Neurology 2012; 236(1): 50-57. doi: 10.1016/j. expneurol.2012.04.001
  • 79. Garry P, Ezra M, Rowland M, Westbrook J, Pattinson K. The role of the nitric oxide pathway in brain injury and its treatment from bench to bedside. Experimental Neurology 2015; 263: 235-243. doi: 10.1016/j.expneurol.2014.10.017
  • 80. Bolisetty S, Dhawan A, Abdel-Latif M, Bajuk B, Stack J et al. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 2014; 133(1): 55-62. doi: 10.1542/peds.2013-0372
  • 81. Chen Q, Tang J, Tan L, Guo J, Tao Y et al. Intracerebral Hematoma Contributes to Hydrocephalus After Intraventricular Hemorrhage via Aggravating Iron Accumulation. Stroke 2015; 46(10): 2902-2908. doi: 10.1161/STROKEAHA.115.009713
  • 82. Xiong XY, Liu L, Wang FX, Yang YR, Hao JW et al. Toll- Like Receptor 4/MyD88-Mediated Signaling of Hepcidin Expression Causing Brain Iron Accumulation, Oxidative Injury, and Cognitive Impairment After Intracerebral Hemorrhage. Circulation 2016; 134(14): 1025-1038. doi: 10.1161/CIRCULATIONAHA.116.021881
  • 83. Garton T, Hua Y, Xiang J, Xi G, Keep RF. Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opinion on Therapeutic Targets 2017; 21(12): 1111-1122. doi: 10.1080/14728222.2017.1397628
  • 84. Ley D, Romantsik O, Vallius S, Sveinsdottir K, Sveinsdottir S et al. High Presence of Extracellular Hemoglobin in the Periventricular White Matter Following Preterm Intraventricular Hemorrhage. FrontIiers in Physiology 2016; 7: 330. doi: 10.3389/fphys.2016.00330
  • 85. Petersen MA, Ryu JK, Akassoglou K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nature Reviews Neuroscience 2018; 19(5): 283-301. doi: 10.1038/nrn.2018.13
  • 86. Li Q, Han X, Lan X, Gao Y, Wan J et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain. Journal of Clinical Investigation Insight 2017; 2(7): e90777. doi: 10.1172/jci. insight.90777
  • 87. Agyemang AA, Sveinsdottir K, Vallius S, Sveinsdottir S, Bruschettini M et al. Cerebellar Exposure to Cell-Free Hemoglobin Following Preterm Intraventricular Hemorrhage: Causal in Cerebellar Damage? Translational Stroke Research 2017; 8(5): 461-473. doi: 10.1007/s12975-017-0539-1
  • 88. Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatric Research 2001; 49(2): 208-212. doi: 10.1203/00006450-200102000-00013
  • 89. Hua Y, Keep RF, Hoff JT, Xi G. Thrombin preconditioning attenuates brain edema induced by erythrocytes and iron. J Cereb Blood Flow Metab 2003; 23(12): 1448-1454. doi: 10.1097/01.WCB.0000090621.86921.D5
  • 90. Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ et al. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery 2014; 75(6): 696- 705; discussion 706. doi: 10.1227/NEU.0000000000000524
APA KELES GULNERMAN E, Kazan H, Aral A, Bolay H (2022). Microglial iron trafficking: new player in brain injury. , 1415 - 1424. 10.55730/1300-0144.5481
Chicago KELES GULNERMAN Elif,Kazan Hasan,Aral Arzu L.,Bolay Hayrunnisa Microglial iron trafficking: new player in brain injury. (2022): 1415 - 1424. 10.55730/1300-0144.5481
MLA KELES GULNERMAN Elif,Kazan Hasan,Aral Arzu L.,Bolay Hayrunnisa Microglial iron trafficking: new player in brain injury. , 2022, ss.1415 - 1424. 10.55730/1300-0144.5481
AMA KELES GULNERMAN E,Kazan H,Aral A,Bolay H Microglial iron trafficking: new player in brain injury. . 2022; 1415 - 1424. 10.55730/1300-0144.5481
Vancouver KELES GULNERMAN E,Kazan H,Aral A,Bolay H Microglial iron trafficking: new player in brain injury. . 2022; 1415 - 1424. 10.55730/1300-0144.5481
IEEE KELES GULNERMAN E,Kazan H,Aral A,Bolay H "Microglial iron trafficking: new player in brain injury." , ss.1415 - 1424, 2022. 10.55730/1300-0144.5481
ISNAD KELES GULNERMAN, Elif vd. "Microglial iron trafficking: new player in brain injury". (2022), 1415-1424. https://doi.org/10.55730/1300-0144.5481
APA KELES GULNERMAN E, Kazan H, Aral A, Bolay H (2022). Microglial iron trafficking: new player in brain injury. Turkish Journal of Medical Sciences, 52(5), 1415 - 1424. 10.55730/1300-0144.5481
Chicago KELES GULNERMAN Elif,Kazan Hasan,Aral Arzu L.,Bolay Hayrunnisa Microglial iron trafficking: new player in brain injury. Turkish Journal of Medical Sciences 52, no.5 (2022): 1415 - 1424. 10.55730/1300-0144.5481
MLA KELES GULNERMAN Elif,Kazan Hasan,Aral Arzu L.,Bolay Hayrunnisa Microglial iron trafficking: new player in brain injury. Turkish Journal of Medical Sciences, vol.52, no.5, 2022, ss.1415 - 1424. 10.55730/1300-0144.5481
AMA KELES GULNERMAN E,Kazan H,Aral A,Bolay H Microglial iron trafficking: new player in brain injury. Turkish Journal of Medical Sciences. 2022; 52(5): 1415 - 1424. 10.55730/1300-0144.5481
Vancouver KELES GULNERMAN E,Kazan H,Aral A,Bolay H Microglial iron trafficking: new player in brain injury. Turkish Journal of Medical Sciences. 2022; 52(5): 1415 - 1424. 10.55730/1300-0144.5481
IEEE KELES GULNERMAN E,Kazan H,Aral A,Bolay H "Microglial iron trafficking: new player in brain injury." Turkish Journal of Medical Sciences, 52, ss.1415 - 1424, 2022. 10.55730/1300-0144.5481
ISNAD KELES GULNERMAN, Elif vd. "Microglial iron trafficking: new player in brain injury". Turkish Journal of Medical Sciences 52/5 (2022), 1415-1424. https://doi.org/10.55730/1300-0144.5481