14 16

Proje Grubu: MAG Sayfa Sayısı: 183 Proje No: 115M585 Proje Bitiş Tarihi: 01.10.2020 Metin Dili: Türkçe İndeks Tarihi: 28-12-2022

Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti

Öz:
Bu projede, Peridinamik teori ile kompozit yapılarda meydana gelen hasarın tahmin etmeye yönelik çalısmalar yapılmıstır. Klasik Sürekli Ortamlar Mekanigi, yerel kısmi türevlere dayalı oldugu için yapıda meydana gelecek hasarın modellenmesine uygun degildir. Peridinamik teori ise yerel olmayan ve integral bazlı denklemlere dayanan bir teori olması nedeniyle hasar olusumu ve ilerlemesinin nümerik analizi için oldukça uygun bir teoridir. Ayrıca Peridinamik teoriye ek olarak, Sonlu Elemanlar Analizi (SEA) ve Kohezif Bölge Metodu (KBM) yapılan çalısmalarda kullanılan nümerik yöntemlerdir. Proje kapsamında, kompozit malzemelerde meydana gelen mod I (Çift Ankastre Kiris Testi), mod II (Uç Çentik Egilmesi Testi) ve karma mod (Karısık Modlu Bükme Testi) yüklemeleri altındaki delaminasyon hasarını tahmin etmeye yönelik Peridinamik bir formülasyon gelistirilmistir. Bu formülasyon, analitik çözüm, KBM çözümü ve literatür ile dogrulanmıstır. Ayrıca, yapıstırılmıs iki homojen plaka arasında çarpma hasarı sonucu yüksek hızlarda ilerleyen çatlaklar Peridinamik yöntemle analiz edilmistir. Ortotropik plakalar için, kesme deformasyonunu dikkate alan Mindlin plakası formülasyonu, Peridinamik teoriye uyarlanmıstır. Kalın ortotropik plakalarda egilme yükü sonucu olusan deformasyonlar ve çatlak olusumu olusturulan yöntem ile modellenmistir. Elde edilen elastik deformasyonlar SEA ile dogrulanmıstır. Çekme yükü altındaki kompozit plakalardaki delikler etrafında olusan gerinim ve gerilmelerin birbiriyle etkilesimi Peridinamik yöntem ile incelenmistir ve elde edilen sonuçlar literatür ile dogrulanmıstır. Genel olarak peridinamik teori ile elde edilen tüm sonuçlar, Peridinamik teorinin dinamik ve statik yüklemeler altında, kompozit malzemelerdeki hasar davranısını tahmin etmek için oldukça uygun oldugunu göstermistir.
Anahtar Kelime: Bag Bazlı Peridinamik Teori Kohezif Bölge Modellemesi Kompozit malzemeler delaminasyon hasarı

Konular: Mühendislik, Makine
Erişim Türü: Erişime Açık
  • [1] P. Camanho and C. G. Davila, “Mixed-Mode Decohesion Finite Elements in for the Simulation Composite of Delamination Materials,” Nasa, vol. TM-2002-21, no. June, pp. 1–37, 2002.
  • [2] P. P. Camanho, C. G. Dávila, and M. F. De Moura, “Numerical simulation of mixedmode progressive delamination in composite materials,” J. Compos. Mater., vol. 37, no. 16, pp. 1415–1438, 2003.
  • [3] D. M. Parks, “A stiffness derivative finite element technique for determination of crack tip stress intensity factors,” Int. J. Fract., vol. 10, no. 4, pp. 487–502, 1974.
  • [4] J. R. Rice, “A path independent integral and the approximate analysis of strain concentration by notches and cracks,” J. Appl. Mech. Trans. ASME, vol. 35, no. 2, pp. 379–388, 1964.
  • [5] E. F. Rybicki and M. F. Kanninen, “A finite element calculation of stress intensity factors by a modified crack closure integral,” Eng. Fract. Mech., vol. 9, no. 4, pp. 931–938, 1977.
  • [6] A. Silva and M. J. M. De Freitas, “Mixed-mode delamination growth of laminar composites by using three-dimensional finite element modeling,” Fatigue Fract. Eng. Mater. Struct., vol. 26, no. 6, pp. 543–549, 2003.
  • [7] B. D. Davidson, “Prediction of energy release rate for edge delamination using a crack tip element approach,” in ASTM Special Technical Publication, 1995, no. 1230, pp. 155– 175.
  • [8] D. S. Dugdale, “Yielding of steel sheets containing slits,” J. Mech. Phys. Solids, vol. 8, no. 2, pp. 100–104, 1960.
  • [9] G. I. Barenblatt, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Adv. Appl. Mech., vol. 7, no. C, pp. 55–129, 1962.
  • [10] A. Hillerborg, M. E. Modéeer, and P.-E. Petersson, “Analysis of Crack Formation and Crack Growth by Means of Fracture Mechanics and Finite Elements,” Cem. Concr. Res., vol. 6, no. 6, pp. 773–781, 1976.
  • [11] A. Turon, P. P. Camanho, J. Costa, and J. Renart, “Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness,” Compos. Struct., 2010.
  • [12] M. F. S. F. De Moura, J. P. M. Gonçalves, J. A. G. Chousal, and R. D. S. G. Campilho, “Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behaviour of bonded joints,” Int. J. Adhes. Adhes., 2008.
  • [13] B. R. K. Blackman, H. Hadavinia, A. J. Kinloch, and J. G. Williams, “The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints,” Int. J. Fract., vol. 119, no. 1, pp. 25–46, 2003.
  • [14] M. J. Van Den Bosch, “An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion,” vol. 73, pp. 1220–1234, 2006.
  • [15] M. Heidari-Rarani and A. R. Ghasemi, “Appropriate shape of cohesive zone model for delamination propagation in ENF specimens with R-curve effects,” Theor. Appl. Fract. Mech., vol. 90, pp. 174–181, 2017.
  • [16] S. A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces,” J. Mech. Phys. Solids, vol. 48, no. 1, pp. 175–209, 2000.
  • [17] R. W. Macek and S. a. Silling, “Peridynamics via finite element analysis,” Finite Elem. Anal. Des., vol. 43, no. 15, pp. 1169–1178, 2007.
  • [18] S. a. Silling and E. Askari, “A meshfree method based on the peridynamic model of solid mechanics,” Comput. Struct., vol. 83, no. 17–18, pp. 1526–1535, 2005.
  • [19] Y. Tong, W. Shen, J. Shao, and J. Chen, “A new bond model in peridynamics theory for progressive failure in cohesive brittle materials,” Eng. Fract. Mech., 2020.
  • [20] L. B. Freund, Dynamic Fracture Mechanics. Cambridge University Press, 1998.
  • [21] K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: I. Crack initiation and arrest,” Int. J. Fract., 1984.
  • [22] X.-P. Xu and A. Needleman, “Numerical simulations of fast crack growth in brittle solids,” Journal of the Mechanics and Physics of Solids, vol. 42, no. 9. pp. 1397–1434, 1994.
  • [23] E. Sharon and J. Fineberg, “Microbranching instability and the dynamic fracture of brittle materials,” Phys. Rev. B - Condens. Matter Mater. Phys., 1996.
  • [24] K. B. Broberg, “Differences between mode I and mode II crack propagation,” in Pure and Applied Geophysics, 2006.
  • [25] D. J. Andrews, “RUPTURE VELOCITY OF PLANE STRAIN SHEAR CRACKS.,” J Geophys Res, 1976.
  • [26] R. Burridge, G. Conn, and L. B. Freund, “The stability of a rapid mode II shear crack with finite cohesive traction,” J. Geophys. Res. Solid Earth, vol. 84.B5, pp. 2210–2222, 1979.
  • [27] H. Gao, Y. Huang, P. Gumbsch, and A. J. Rosakis, “On radiation-free transonic motion of cracks and dislocations,” J. Mech. Phys. Solids, 1999.
  • [28] C. Liu, J. Lambros, and A. J. Rosakis, “Highly transient elastodynamic crack growth in a bimaterial interface: Higher order asymptotic analysis and optical experiments,” J. Mech. Phys. Solids, 1993.
  • [29] J. Lambros and A. J. Rosakis, “Shear dominated transonic interfacial crack growth in a bimaterial-I. Experimental observations,” J. Mech. Phys. Solids, 1995.
  • [30] A. J. Rosakis, O. Samudrala, and D. Coker, “Cracks faster than the shear wave speed,” Science (80-. )., 1999.
  • [31] A. Needleman, “An analysis of intersonic crack growth under shear loading,” J. Appl. Mech. Trans. ASME, vol. 66, no. 4, pp. 847–857, 1999.
  • [32] N. P. Daphalapurkar, H. Lu, D. Coker, and R. Komanduri, “Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method,” Int. J. Fract., vol. 143, no. 1, pp. 79–102, 2007.
  • [33] C. Soutis, “Fibre reinforced composites in aircraft construction,” Progress in Aerospace Sciences. 2005.
  • [34] J. Zhang and M. F. Ashby, “The out-of-plane properties of honeycombs,” Int. J. Mech. Sci., 1992.
  • [35] N. J. Pagano, “Exact Solutions for Composite Laminates in Cylindrical Bending,” J. Compos. Mater., 1969.
  • [36] E. Reissner, “On transverse bending of plates, including the effect of transverse shear deformation,” Int. J. Solids Struct., 1975.
  • [37] R. D. Mindlin, “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates,” in The Collected Papers of Raymond D. Mindlin Volume I, 1989.
  • [38] J. M. Whitney, “The Effect of Transverse Shear Deformation on the Bending of Laminated Plates,” J. Compos. Mater., 1969.
  • [39] M. V. V. Murthy, “IMPROVED TRANSVERSE SHEAR DEFORMATION THEORY FOR LAMINATED ANISOTROPIC PLATES.,” NASA Tech. Pap., 1981.
  • [40] J. N. Reddy and C. F. Liu, “A higher-order shear deformation theory of laminated elastic shells,” Int. J. Eng. Sci., 1985.
  • [41] J. L. Mantari, A. S. Oktem, and C. Guedes Soares, “A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates,” Int. J. Solids Struct., 2012.
  • [42] A. J. M. Ferreira, C. M. C. Roque, and P. A. L. S. Martins, “Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method,” Compos. Part B Eng., 2003.
  • [43] C. Diyaroglu, E. Oterkus, S. Oterkus, and E. Madenci, “Peridynamics for bending of beams and plates with transverse shear deformation,” Int. J. Solids Struct., vol. 69–70, pp. 152–168, 2015.
  • [44] U. Yolum and M. . Güler, “On the peridynamic formulation for an orthotropic Mindlin plate under bending,” Math. Mech. Solids, 2019.
  • [45] R. Karakuzu, C. R. Çalişkan, M. Aktaş, and B. M. Içten, “Failure behavior of laminated composite plates with two serial pin-loaded holes,” Compos. Struct., vol. 82, no. 2, pp. 225–234, 2008.
  • [46] B. G. Green, M. R. Wisnom, and S. R. Hallett, “An experimental investigation into the tensile strength scaling of notched composites,” Compos. Part A Appl. Sci. Manuf., vol. 38, no. 3, pp. 867–878, 2007.
  • [47] S. Kazemahvazi, J. Kiele, and D. Zenkert, “Tensile strength of UD-composite laminates with multiple holes,” Compos. Sci. Technol., vol. 70, no. 8, pp. 1280–1287, 2010.
  • [48] A. Nanda Kishore, S. K. Malhotra, and N. Siva Prasad, “Failure analysis of multi-pin joints in glass fibre/epoxy composite laminates,” Compos. Struct., vol. 91, no. 3, pp. 266–277, 2009.
  • [49] F. Ghezzo, G. Giannini, F. Cesari, and G. Caligiana, “Numerical and experimental analysis of the interaction between two notches in carbon fibre laminates,” Compos. Sci. Technol., 2008.
  • [50] E. Özaslan, M. A. Güler, A. Yetgin, and B. Acar, “Stress analysis and strength prediction of composite laminates with two interacting holes,” Compos. Struct., vol. 221, no. November 2018, p. 110869, 2019.
  • [51] R. M. O’Higgins, M. A. McCarthy, and C. T. McCarthy, “Comparison of open hole tension characteristics of high strength glass and carbon fibre-reinforced composite materials,” Compos. Sci. Technol., vol. 68, no. 13, pp. 2770–2778, 2008.
  • [52] S. A. Silling, “Dynamic fracture modeling with a meshfree peridynamic code,” in Computational Fluid and Solid Mechanics 2003, 2003.
  • [53] E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications. Springer, 2014.
  • [54] E. Askari, J. Xu, and S. Silling, “Peridynamic Analysis of Damage and Failure in Composites,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, no. January, pp. 1–12.
  • [55] J. Xu, A. Askari, O. Weckner, and S. Silling, “Peridynamic analysis of impact damage in composite laminates,” J. Aerosp. Eng., 2008.
  • [56] K. W. Colavito, B. Kilic, E. Celik, E. Madenci, E. Askari, and S. Silling, “Effects of nanoparticles on stiffness and impact strength of composites,” in Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2007.
  • [57] J. Xu, A. Askari, O. Weckner, H. Razi, and S. Silling, “Damage and failure analysis of composite laminates under biaxial loads,” in Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2007.
  • [58] B. Kilic, A. Agwai, and E. Madenci, “Peridynamic theory for progressive damage prediction in center-cracked composite laminates,” Compos. Struct., vol. 90, no. 2, pp. 141–151, 2009.
  • [59] E. Madenci, K. Colavito, and N. Phan, “Peridynamics for unguided crack growth prediction under mixed-mode loading,” Eng. Fract. Mech., vol. 167, pp. 34–44, 2016.
  • [60] S. A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces,” J. Mech. Phys. Solids, vol. 48, no. 1, pp. 175–209, 2000.
  • [61] W. Gerstle, N. Sau, and S. A. Silling, “Peridynamic modeling of plain and reinforced concrete structures,” in 18th International Conference on Structural Mechanics in Reactor Technology, 2005, pp. 54–68.
  • [62] Erkan Oterkus, “Peridynamic Theory for Modeling Three-Dimensional Damage Growth in Metallic and Composite Structures,” 2008.
  • [63] A. K. Kaw, Mechanics of composite materials, second edition. 2005.
  • [64] S. T. Pinho, L. Iannucci, and P. Robinson, “Formulation and implementation of decohesion elements in an explicit finite element code,” Compos. Part A Appl. Sci. Manuf., vol. 37, no. 5, pp. 778–789, 2006.
  • [65] P. W. Harper and S. R. Hallett, “Cohesive zone length in numerical simulations of composite delamination,” Eng. Fract. Mech., 2008.
  • [66] M. Alfano, F. Furgiuele, A. Leonardi, C. Maletta, and G. H. Paulino, “Mode I fracture of adhesive joints using tailored cohesive zone models,” in International Journal of Fracture, 2009.
  • [67] A. Turon, C. G. Dávila, P. P. Camanho, and J. Costa, “An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models,” Eng. Fract. Mech., 2007.
  • [68] D. Alvarez Feito, “Fracture mechanics of carbon fibre reinforced plastics to Ti-alloy adhesive joints,” PhD Thesis, Dep. Mech. Eng. Imp. Coll. London, no. October, 2012.
  • [69] G. R. Irwin, “Onset of fast crack propagation in high strenght steel and aluminum alloys,” Nav. Res. Lab., vol. 4763, pp. 1–15, 1956.
  • [70] B. D. Davidson, S. J. Gharibian, and L. Yu, “Evaluation of energy release rate-based approaches for predicting delamination growth in laminated composites,” Int. J. Fract., vol. 105, no. 4, pp. 343–365, 2000.
  • [71] J. P. Berry, “Determination of fracture surface energies by the cleavage technique,” J. Appl. Phys., vol. 34, no. 1, pp. 62–68, 1963.
  • [72] B. D. Davidson, P. L. Fariello, R. C. Hudson, and V. Sundararaman, “Accuracy assessment of the singular-field-based mode-mix decomposition procedure for the prediction of delamination,” Compos. Mater. Test. Des., vol. 13, pp. 109–128, 1997.
  • [73] J. G. Williams, “On the calculation of energy release rates for cracked laminates,” Int. J. Fract., vol. 36, no. 2, pp. 101–119, 1988.
  • [74] A. J. Kinloch, Y. Wang, J. G. Williams, and P. Yayla, “The mixed-mode delamination of fibre composite materials,” Compos. Sci. Technol., vol. 47, no. 3, pp. 225–237, 1993.
  • [75] S. Hashemi, A. J. Kinloch, and J. G. Williams, “The Analysis of Interlaminar Fracture in Uniaxial Fibre-Polymer Composites,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 427, no. 1872, pp. 173–199, 1990.
  • [76] J. G. Williams, “The fracture mechanics of delamination tests,” J. Strain Anal. Eng. Des., vol. 24, no. 4, pp. 207–214, 1989.
  • [77] J. G. Williams, “A note on finite displacement correction factors for the end notch flexure (ENF) test,” Compos. Sci. Technol., vol. 39, no. 3, pp. 279–282, 1990.
  • [78] S. Hashemi, A. J. Kinloch, and J. G. Williams, “Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites,” J. Mater. Sci. Lett., vol. 8, no. 2, pp. 125–129, 1989.
  • [79] ASTM D5528-01, “Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites,” Am. Stand. Test. Methods, vol. 03, no. Reapproved 2007, pp. 1–12, 2014.
  • [80] J. R. REEDER and J. H. REWS, “Mixed-mode bending method for delamination testing,” AIAA J., vol. 28, no. 7, pp. 1270–1276, 1990.
  • [81] J. R. Reeder, “Refinements to the mixed-mode bending test for delamination toughness,” ASTM J. Compos. Technol. Res., vol. 25, no. 4, pp. 191–195, 2003.
  • [82] S. Bennati, P. Fisicaro, L. Taglialegne, and P. S. Valvo, “Experimental validation of the enhanced beam-theory model of the mixed-mode bending test,” in AIMETA 2017 - Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, 2017, vol. 3, pp. 2119–2127.
  • [83] M. Composites, “ASTM 6671 Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of,” Annu. B. ASTM Stand., vol. i, pp. 1–14, 2007.
  • [84] N. V. De Carvalho, B. Y. Chen, S. T. Pinho, J. G. Ratcliffe, P. M. Baiz, and T. E. Tay, “Modeling delamination migration in cross-ply tape laminates,” Compos. Part A Appl. Sci. Manuf., vol. 71, pp. 192–203, 2015.
  • [85] A. Hillerborg, M. Modéer, and P. E. Petersson, “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,” Cem. Concr. Res., vol. 6, no. 6, pp. 773–781, 1976.
  • [86] A. Needleman, “An analysis of intersonic crack growth under shear loading,” J. Appl. Mech., vol. 66, no. 4, pp. 847–857, 1999.
  • [87] M. G. A. Tijssens, B. L. J. Sluys, and E. Van der Giessen, “Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces,” Eur. J. Mech. A/Solids, vol. 19, no. 5, pp. 761–779, 2000.
  • [88] Y. Mi, M. A. Crisfield, G. A. O. Davies, and H. B. Hellweg, “Progressive delamination using interface elements,” J. Compos. Mater., vol. 32, no. 14, pp. 1246–1272, 1998.
  • [89] G. Alfano and M. A. Crisfield, “Solution strategies for the delamination analysis based on a combination of local-control arc-length and line searches,” Int. J. Numer. Methods Eng., 2003.
  • [90] N. A. Warrior, A. K. Pickett, and N. S. F. Lourenço, “Mixed-Mode Delamination - Experimental and Numerical Studies,” Strain, vol. 39, no. 4, pp. 153–159, 2003.
  • [91] M. F. S. F. de Moura and A. B. de Morais, “Equivalent crack based analyses of ENF and ELS tests,” Eng. Fract. Mech., vol. 75, no. 9, pp. 2584–2596, 2008.
  • [92] The Mathworks Inc., “MATLAB (R2015a),” The MathWorks Inc. 2015.
  • [93] “Using ANSYS workbench for structural analysis,” in Engineering Analysis with ANSYS Software, 2018.
APA GÖRGÜLÜARSLAN R, GÜLER M, ÇÖKER D (2020). Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti. , 0 - 183.
Chicago GÖRGÜLÜARSLAN RECEP MUHAMMET,GÜLER Mehmet Ali,ÇÖKER DEMİRKAN Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti. (2020): 0 - 183.
MLA GÖRGÜLÜARSLAN RECEP MUHAMMET,GÜLER Mehmet Ali,ÇÖKER DEMİRKAN Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti. , 2020, ss.0 - 183.
AMA GÖRGÜLÜARSLAN R,GÜLER M,ÇÖKER D Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti. . 2020; 0 - 183.
Vancouver GÖRGÜLÜARSLAN R,GÜLER M,ÇÖKER D Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti. . 2020; 0 - 183.
IEEE GÖRGÜLÜARSLAN R,GÜLER M,ÇÖKER D "Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti." , ss.0 - 183, 2020.
ISNAD GÖRGÜLÜARSLAN, RECEP MUHAMMET vd. "Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti". (2020), 0-183.
APA GÖRGÜLÜARSLAN R, GÜLER M, ÇÖKER D (2020). Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti. , 0 - 183.
Chicago GÖRGÜLÜARSLAN RECEP MUHAMMET,GÜLER Mehmet Ali,ÇÖKER DEMİRKAN Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti. (2020): 0 - 183.
MLA GÖRGÜLÜARSLAN RECEP MUHAMMET,GÜLER Mehmet Ali,ÇÖKER DEMİRKAN Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti. , 2020, ss.0 - 183.
AMA GÖRGÜLÜARSLAN R,GÜLER M,ÇÖKER D Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti. . 2020; 0 - 183.
Vancouver GÖRGÜLÜARSLAN R,GÜLER M,ÇÖKER D Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti. . 2020; 0 - 183.
IEEE GÖRGÜLÜARSLAN R,GÜLER M,ÇÖKER D "Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti." , ss.0 - 183, 2020.
ISNAD GÖRGÜLÜARSLAN, RECEP MUHAMMET vd. "Darbe Ve Hasara Ugramıs Tabakalı Kompozitlerde Çatlak Ilerlemesinin Sayısal Ve Deneysel Yöntemlerle Tespiti". (2020), 0-183.