Yıl: 2021 Cilt: 11 Sayı: 4 Sayfa Aralığı: 3014 - 3023 Metin Dili: Türkçe DOI: 10.21597/jist.951364 İndeks Tarihi: 28-12-2022

Transient structural analysis of a Turbula mixer

Öz:
Powder mixing is a significant step in the manufacturing process of many industrial products such as pharmaceuticals, foodstuffs, plastics, fertilizers, and ceramics. Especially in recent years, with the development of material technology, the importance of powder mixers has increased. But dynamic characteristics of powder mixer is very complex problem. In this paper, a Turbula type mixer has been modeled with the Solidworks® and its nonlinear transient response was investigated by the Finite Element Method (FEM). Finite element analysis (FEA) was used to determine the transient response of the vessel and stirrups under different load conditions. The transient analysis is carried out for different rotation speeds (30, 45, and 60 rev/min) of powder mixer and equivalent stresses on vessel and stirrup were obtained. In addition, 1, 3 and 5 kg mass added to the vessel homogeneously in order to obtain the influence of added mass (represent the powder mass). Results revealed that with increasing rotation speed and added mass, the equivalent stress in the vessel and stirrups increased. Maximum stress occurred in the joint of stirrup and vessel. Commercial software ANSYS Workbench (version 19.2) and nonlinear ANSYS® Mechanical APDL solver have utilized for transient response of powder mixer
Anahtar Kelime: Powder Mixer Design Transient Structural Analysis Finite Element Method Machine Design

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Alexander A, Shinbrot T, Muzzio FJ, 2002. Scaling surface velocities in rotating cylinders as a function of vessel radius, rotation rate, and particle size. Powder Technology, 126(2): 174-190.
  • Ammarcha C, Gatumel C, Dirion J-L, Cabassud M, Mizonov V, Berthiaux H, 2013. Transitory powder flow dynamics during emptying of a continuous mixer. Chemical Engineering and Processing: Process Intensification, 65: 68-75.
  • Arratia P, Duong N-h, Muzzio F, Godbole P, Lange A, Reynolds S, 2006. Characterizing mixing and lubrication in the Bohle Bin blender. Powder Technology, 161(3): 202-208.
  • Bridgwater J, 2012. Mixing of powders and granular materials by mechanical means—a perspective. Particuology, 10(4): 397-427.
  • Brone D, Muzzio F, 2000. Enhanced mixing in double-cone blenders. Powder Technology, 110(3): 179- 189.
  • Brone D, Wightman C, Connor K, Alexander A, Muzzio F, Robinson P, 1997. Using flow perturbations to enhance mixing of dry powders in V-blenders. Powder Technology, 91(3): 165-172.
  • Gupta M, Sarkar K, Hodges DH, (2019). 3-D Stress-Strain Histories for Composite Beams in Nonlinear Transient Structural Analysis. Paper presented at the AIAA Scitech 2019 Forum.
  • Henein H, Brimacombe J, Watkinson A, 1983. The modeling of transverse solids motion in rotary kilns. Metallurgical Transactions B, 14(2): 207-220.
  • Huang A-N, Kuo H-P, 2014. Developments in the tools for the investigation of mixing in particulate systems–A review. Advanced Powder Technology, 25(1): 163-173.
  • Jadhav P, Jadhav B, 2013. A study on mixing of composite solids in the three dimensional turbula mixer. International Journal of Advanced Engineering Chieh Kung Research, 2: 138-141.
  • Mani C, Balasubramani S, Karthikeyan R, 2020. Finite element simulation on effect of bevel angle and filler material on tensile strength of 316L stainless steel/Monel 400 dissimilar metal welded joints. Materials Today: Proceedings.
  • Marigo M, Cairns D, Davies M, Ingram A, Stitt E, 2012. A numerical comparison of mixing efficiencies of solids in a cylindrical vessel subject to a range of motions. Powder technology, 217: 540-547.
  • Masiuk S, 1987. Power consumption, mixing time and attrition action for solid mixing in a ribbon mixer. Powder technology, 51(3): 217-229.
  • Mayer-Laigle C, Gatumel C, Berthiaux H, 2015. Mixing dynamics for easy flowing powders in a lab scale Turbula® mixer. Chemical Engineering Research and Design, 95: 248-261.
  • Mayer-Laigle C, Gatumel C, Berthiaux H, 2019. Scale-up in Turbula® mixers based on the principle of similarities. Particulate Science and Technology, 1-12.
  • Mellmann J, 2001. The transverse motion of solids in rotating cylinders—forms of motion and transition behavior. Powder technology, 118(3): 251-270.
  • Muzzio FJ, Robinson P, Wightman C, Brone D, 1997. Sampling practices in powder blending. International journal of pharmaceutics, 155(2): 153-178.
  • Obadele B, Masuku Z, Olubambi P, 2012. Turbula mixing characteristics of carbide powders and its influence on laser processing of stainless steel composite coatings. Powder technology, 230: 169- 182.
  • Payer E, Kainz A, Fiedler GA, 1995. Fatigue Analysis of Crankshafts Using Nonlinear Transient Simulation Techniques. SAE transactions, 628-634.
  • Pham M-N, Yang C-J, Kim J-H, Kim B-G, 2017. Transient Structural Analysis of Piston and Connecting Rods of Reciprocating Air Compressor Using FEM. Journal of the Korean Society of Marine Environment & Safety, 23(4): 393-399.
  • Poux M, Fayolle P, Bertrand J, Bridoux D, Bousquet J, 1991. Powder mixing: some practical rules applied to agitated systems. Powder Technology, 68(3): 213-234.
  • Rhodes MJ, 1990. Principles of powder technology.
  • Thakur R, Vial C, Nigam K, Nauman E, Djelveh G, 2003. Static mixers in the process industries—a review. Chemical Engineering Research and Design, 81(7): 787-826.
  • Thilak V, Krishnaraj R, Sakthivel M, Kanthavel K, Marudachalam M, Gual R, 2011. Transient thermal and structural analysis of the rotor disc of disc brake. International Journal of Scientific & Engineering Research, 2(8): 1-4.
  • Wohlhart K, (1981). Dynamic analyis of the turbula. Paper presented at the International symposium on gearing and power transmission, Tokyo.
APA Beytüt H, uzun m, Temiz Ş (2021). Transient structural analysis of a Turbula mixer. , 3014 - 3023. 10.21597/jist.951364
Chicago Beytüt Hüseyin,uzun mahir,Temiz Şemsettin Transient structural analysis of a Turbula mixer. (2021): 3014 - 3023. 10.21597/jist.951364
MLA Beytüt Hüseyin,uzun mahir,Temiz Şemsettin Transient structural analysis of a Turbula mixer. , 2021, ss.3014 - 3023. 10.21597/jist.951364
AMA Beytüt H,uzun m,Temiz Ş Transient structural analysis of a Turbula mixer. . 2021; 3014 - 3023. 10.21597/jist.951364
Vancouver Beytüt H,uzun m,Temiz Ş Transient structural analysis of a Turbula mixer. . 2021; 3014 - 3023. 10.21597/jist.951364
IEEE Beytüt H,uzun m,Temiz Ş "Transient structural analysis of a Turbula mixer." , ss.3014 - 3023, 2021. 10.21597/jist.951364
ISNAD Beytüt, Hüseyin vd. "Transient structural analysis of a Turbula mixer". (2021), 3014-3023. https://doi.org/10.21597/jist.951364
APA Beytüt H, uzun m, Temiz Ş (2021). Transient structural analysis of a Turbula mixer. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(4), 3014 - 3023. 10.21597/jist.951364
Chicago Beytüt Hüseyin,uzun mahir,Temiz Şemsettin Transient structural analysis of a Turbula mixer. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11, no.4 (2021): 3014 - 3023. 10.21597/jist.951364
MLA Beytüt Hüseyin,uzun mahir,Temiz Şemsettin Transient structural analysis of a Turbula mixer. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.11, no.4, 2021, ss.3014 - 3023. 10.21597/jist.951364
AMA Beytüt H,uzun m,Temiz Ş Transient structural analysis of a Turbula mixer. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 11(4): 3014 - 3023. 10.21597/jist.951364
Vancouver Beytüt H,uzun m,Temiz Ş Transient structural analysis of a Turbula mixer. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 11(4): 3014 - 3023. 10.21597/jist.951364
IEEE Beytüt H,uzun m,Temiz Ş "Transient structural analysis of a Turbula mixer." Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11, ss.3014 - 3023, 2021. 10.21597/jist.951364
ISNAD Beytüt, Hüseyin vd. "Transient structural analysis of a Turbula mixer". Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11/4 (2021), 3014-3023. https://doi.org/10.21597/jist.951364