Yıl: 2022 Cilt: 46 Sayı: 6 Sayfa Aralığı: 488 - 500 Metin Dili: İngilizce DOI: 10.55730/1300-0152.2634 İndeks Tarihi: 30-12-2022

Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells

Öz:
Background/aim: Despite great progress in complex gene regulatory mechanisms in the dynamic tumor microenvironment, the potential contribution of long noncoding RNAs (lncRNAs) to cancer cell metabolism is poorly understood. Death receptor 5 antisense (DR5-AS) is a cisplatin inducible lncRNA whose knockdown modulates cell morphology. However, its effect on cell metabolism is unknown. The aim of this study is to examine metabolic changes modulated by cisplatin and DR5-AS lncRNA in HeLa cells. Materials and methods: We used cisplatin as a universal cancer therapeutic drug to modulate metabolic changes in HeLa cervix cancer cells. We then examined the extent of metabolic changes by Fourier transform infrared spectroscopy (FTIR). We also performed transcriptomics analyses by generating new RNA-seq data with total RNAs isolated from cisplatin-treated HeLa cells. Then, we compared cisplatin-mediated transcriptomics and macromolecular changes with those mediated by DR5-AS knockdown. Results: Cisplatin treatment caused changes in the unsaturated fatty acid and lipid-to-protein ratios and the glycogen content. These observations in altered cellular metabolism were supported by transcriptomics analyses. FTIR spectroscopy analyses have revealed that DR5-AS knockdown causes a 20.9% elevation in the lipid/protein ratio and a 76.6% decrease in lipid peroxidation. Furthermore, we detected a 3.42% increase in the chain length of the aliphatic lipids, a higher content of RNA, and a lower amount of glycogen indicating relatively lower metabolic activity in the DR5-AS knockdown HeLa cells. Interestingly, we observed a similar gene expression pattern under cisplatin treatment and DR5-AS knockdown HeLa cells. Conclusion: These results suggest that DR5-AS lncRNA appears to account for a fraction of cisplatin-mediated macromolecular and metabolic changes in HeLa cervix cancer cells.
Anahtar Kelime: HeLa cells DR5-AS cisplatin FTIR spectroscopy cancer metabolism transcriptomics

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Andrews S (2010) FASTQC. A quality control tool for high throughput sequence data. In: Bánsághi S, Golenár T, Madesh M, Csordás G, RamachandraRao S, Sharma K, Yule DI, Joseph SK, Hajnóczky G (2014). Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species. The Journal of Biological Chemistry 289: 8170-8181.
  • Cáceres-Durán MÁ, Ribeiro-Dos-Santos Â, Vidal AF (2020). Roles and Mechanisms of the Long Noncoding RNAs in Cervical Cancer. International Journal of Molecular Sciences 21 (24): 9742.
  • Cakmak G, Togan I, Severcan F (2006). 17Beta-estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: a comparative study with nonylphenol. Aquatic Toxicology (Amsterdam, Netherlands) 77: 53-63.
  • Camões F, Islinger M, Guimarães SC, Kilaru S, Schuster M et al. (2015). New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. Biochimica et Biophysica Acta 1853: 111-125.
  • Cao H, Wahlestedt C, Kapranov P (2018). Strategies to Annotate and Characterize Long Noncoding RNAs: Advantages and Pitfalls. Trends in Genetics 34: 704-721.
  • Ceylan C, Camgoz A, Baran Y (2012). Macromolecular Changes in Nilotinib Resistant K562 Cells; an In vitro Study by Fourier Transform Infrared Spectroscopy. Technology in Cancer Research & Treatment 11: 333-344.
  • Chang L, Xu W, Zhang Y, Gong F (2019). Long non-coding RNA- NEF targets glucose transportation to inhibit the proliferation of non-small-cell lung cancer cells. Oncology Letters 17: 2795- 2801
  • Chen CY, Kawasumi M, Lan TY, Poon CL, Lin YS et al. (2020). Adaptation to Endoplasmic Reticulum Stress Enhances Resistance of Oral Cancer Cells to Cisplatin by Up-Regulating Polymerase η and Increasing DNA Repair Efficiency. Int J Mol Sci 22 (1): 355.
  • Ci YX, Gao TY, Feng J, Guo ZQ (1999). Fourier Transform Infrared Spectroscopic Characterization of Human Breast Tissue: Implications for Breast Cancer Diagnosis. 53: 312-315.
  • de Magalhães CR, Carrilho R, Schrama D, Cerqueira M, Rosa da Costa AM et al. (2020). Mid-infrared spectroscopic screening of metabolic alterations in stress-exposed gilthead seabream (Sparus aurata). Scientific Reports 10: 16343-16343.
  • DiStefano JK (2018). The Emerging Role of Long Noncoding RNAs in Human Disease. Methods in Molecular Biology (Clifton, NJ) 1706: 91-110.
  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29: 15-21.
  • Dogan A, Ergen K, Budak F, Severcan F (2007). Evaluation of disseminated candidiasis on an experimental animal model: a fourier transform infrared study. Applied Spectroscopy 61: 199-203.
  • Dogan A, Lasch P, Neuschl C, Millrose MK, Alberts R et al. (2013). ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains. BMC Genomics 14: 386-386.
  • Dogan A, Siyakus G, Severcan F (2007). FTIR spectroscopic characterization of irradiated hazelnut (Corylus avellana L.). Food Chemistry 100: 1106-1114.
  • Durinck S, Spellman PT, Birney E, Huber W (2009). Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols 4: 1184- 1191.
  • Erdoğan İ, Sweef O, Akgül B (2022). Long Noncoding RNAs in Human Cancer and Apoptosis. Current Pharmaceutical Biotechnology 23: 1-17.
  • Ewels P, Magnusson M, Lundin S, Käller M (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32: 3047-3048.
  • Farhadi E, Kobarfard F, H Shirazi F (2016). FTIR Biospectroscopy Investigation on Cisplatin Cytotoxicity in Three Pairs of Sensitive and Resistant Cell Line. Iranian Journal of Pharmaceutical Research: IJPR 15 (1): 213-220.
  • Ghafouri-Fard S, Shoorei H, Taheri M (2020). The Role of Long Non-coding RNAs in Cancer Metabolism: A Concise Review. Frontiers in Oncology 10 : 555825.
  • Gohr K, Hamacher A, Engelke LH, Kassack MU (2017). Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38. BMC Cancer 17: 711- 711.
  • Gonidi M, Athanassiadou AM, Patsouris E, Tsipis A, Dimopoulos S et al. (2011). Mitochondrial UCP4 and bcl-2 expression in imprints of breast carcinomas: relationship with DNA ploidy and classical prognostic factors. Pathology, Research and Practice 207: 377-382.
  • Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J et al. (2018). Bioconda: sustainable and comprehensive software distribution for the life sciences. Nature Methods 15: 475-476.
  • Gupta U, Singh VK, Kumar V, Khajuria Y (2014). Spectroscopic Studies of Cholesterol: Fourier Transform Infra-Red and Vibrational Frequency Analysis. American Scientific Publishers 3 (3): 211-217.
  • Gurer DC, Erdogan İ, Ahmadov U, Basol M, Sweef O et al. (2021). Transcriptomics Profiling Identifies Cisplatin-Inducible Death Receptor 5 Antisense Long Non-coding RNA as a Modulator of Proliferation and Metastasis in HeLa Cells. Frontiers in Cell and Developmental Biology 9: 2248-2248.
  • Hamdan N, Kritsiligkou P, Grant CM (2017). ER stress causes widespread protein aggregation and prion formation. The Journal of Cell Biology 216: 2295-2304.
  • Hoxhaj G, Manning BD (2020). The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nature Reviews Cancer 20: 74-88.
  • Iempridee T (2017). Long non-coding RNA H19 enhances cell proliferation and anchorage-independent growth of cervical cancer cell lines. Experimental Biology and Medicine (Maywood, NJ) 242: 184-193.
  • Jassal B, Matthews L, Viteri G, Gong C, Lorente P et al. (2020). The reactome pathway knowledgebase. Nucleic Acids Research 48: D498-D503.
  • Kadoo P, Dandekar R, Kulkarni M, Mahajan A, Kumawat R et al. (2018). Correlation of mitosis obtained by using 1% crystal violet stain with Ki67LI in histological grades of oral squamous cell carcinoma. Journal of Oral Biology and Craniofacial Research 8: 234-240.
  • Kopylova E, Noé L, Touzet H (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28: 3211-3217.
  • Krueger F (2015). Trim galore. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files 516: 517-517.
  • Lau AN, Vander Heiden MG (2020). Metabolism in the Tumor Microenvironment. Annual Review of Cancer Biology 4: 17- 40.
  • Liao Y, Smyth GK, Shi W (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics (Oxford, England) 30: 923-930.
  • Lin Q, Wang Y, Chen D, Sheng X, Liu J et al. (2017). Cisplatin regulates cell autophagy in endometrial cancer cells via the PI3K/AKT/mTOR signalling pathway. Oncology Letters 13: 3567-3571.
  • Link W, Fernandez-Marcos PJ (2017). FOXO transcription factors at the interface of metabolism and cancer. International Journal of Cancer 141: 2379-2391.
  • Liu M, Jia J, Wang X, Liu Y, Wang C et al. (2018). Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p. Cancer Biology & Therapy 19: 391-399.
  • Lopes-Rodrigues V, Di Luca A, Mleczko J, Meleady P, Henry M et al. (2017). Identification of the metabolic alterations associated with the multidrug resistant phenotype in cancer and their intercellular transfer mediated by extracellular vesicles. Scientific Reports 7: 44541-44541.
  • Love MI, Huber W, Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15: 1-21.
  • Lytovchenko O, Kunji ERS (2017). Expression and putative role of mitochondrial transport proteins in cancer. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1858: 641-654.
  • Ma Y, Hu M, Zhou L, Ling S, Li Y et al. (2019). Long non-coding RNA HOTAIR promotes cancer cell energy metabolism in pancreatic adenocarcinoma by upregulating hexokinase-2. Oncology Letters 18: 2212-2219.
  • Manoharan R, Baraga JJ, Rava RP, Dasari RR, Fitzmaurice M et al. (1993). Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy. Atherosclerosis 103: 181-193.
  • Martínez-Reyes I, Chandel NS (2021). Cancer metabolism: looking forward. Nature Reviews Cancer 21: 669-680.
  • Miyazawa M, Bogdan AR, Tsuji Y (2019). Perturbation of Iron Metabolism by Cisplatin through Inhibition of Iron Regulatory Protein 2. Cell Chemical Biology 26: 85-97.e84.
  • Monroe JD, Moolani SA, Irihamye EN, Speed JS, Gibert Y et al. (2020). RNA-Seq Analysis of Cisplatin and the Monofunctional Platinum(II) Complex, Phenanthriplatin, in A549 Non-Small Cell Lung Cancer and IMR90 Lung Fibroblast Cell Lines. Cells 9 (12): 2637.
  • Mylonis I, Simos G, Paraskeva E (2019). Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells 8: (3): 214.
  • Nguyen T (1985). Applications of fourier transform infrared spectroscopy in surface and interface studies. Progress in Organic Coatings 13: 1-34.
  • Ozek NS, Tuna S, Erson-Bensan AE, Severcan F (2010). Characterization of microRNA-125b expression in MCF7 breast cancer cells by ATR-FTIR spectroscopy. The Analyst 135: 3094-3102.
  • Pavlova NN, Thompson CB (2016). The Emerging Hallmarks of Cancer Metabolism. Cell Metabolism 23: 27-47.
  • Rigas B, Morgello S, Goldman IS, Wong PT (1990). Human colorectal cancers display abnormal Fourier-transform infrared spectra. Proceedings of the National Academy of Sciences of the United States of America 87: 8140-8144.
  • Rosenberg B, Van Camp L, Krigas T (1965). Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature 205: 698-699.
  • Severcan F, Gorgulu G, Gorgulu ST, Guray T (2005). Rapid monitoring of diabetes-induced lipid peroxidation by Fourier transform infrared spectroscopy: evidence from rat liver microsomal membranes. Analytical Biochemistry 339: 36-40.
  • Shirmanova MV, Druzhkova IN, Lukina MM, Dudenkova VV, Ignatova NI et al. (2017). Chemotherapy with cisplatin: insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo. Scientific Reports 7: 8911-8911.
  • Wang Y, Liu Q, Qiu L, Wang T, Yuan H et al. (2015). Molecular structure, IR spectra, and chemical reactivity of cisplatin and transplatin: DFT studies, basis set effect and solvent effect. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 150: 902-908.
  • Wickham H (2006). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York 35: 2006.
  • Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K et al. (2017). Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica acta Part A, Molecular and Biomolecular Spectroscopy 185: 317-335.
  • Wong PT, Wong RK, Caputo TA, Godwin TA, Rigas B (1991). Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis. Proceedings of the National Academy of Sciences 88: 10988 LP-10992.
  • Wu BB, Gong YP, Wu XH, Chen YY, Chen FF et al. (2015). Fourier transform infrared spectroscopy for the distinction of MCF- 7 cells treated with different concentrations of 5-fluorouracil. Journal of Translational Medicine 13: 108.
  • Yang L, Bai HS, Deng Y, Fan L (2015). High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion. European Review for Medical and Pharmacological Sciences 19: 3187-3193.
  • Yao RW, Wang Y, Chen LL (2019). Cellular functions of long noncoding RNAs. Nature Cell Biology 21: 542-551.
  • Zeller C, Dai W, Steele NL, Siddiq A, Walley AJ et al. (2012). Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene 31: 4567-4576.
  • Zendehdel R, Masoudi-Nejad A, Mohammadzadeh JFHS (2012). Cisplatin Resistant Patterns in Ovarian Cell Line Using FTIR and Principle Component Analysis. Iranian Journal of Pharmaceutical Research 11: 235-240.
  • Zhang Y, Bao C, Mu Q, Chen J, Wang J et al. (2016). Reversal of cisplatin resistance by inhibiting PI3K/Akt signal pathway in human lung cancer cells. Neoplasma 63: 362-370.
APA Gurer D, ERDOGAN VATANSEVER I, Ceylan Ç, Akgül B (2022). Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells. , 488 - 500. 10.55730/1300-0152.2634
Chicago Gurer Dilek Cansu,ERDOGAN VATANSEVER IPEK,Ceylan Çağatay,Akgül Bünyamin Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells. (2022): 488 - 500. 10.55730/1300-0152.2634
MLA Gurer Dilek Cansu,ERDOGAN VATANSEVER IPEK,Ceylan Çağatay,Akgül Bünyamin Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells. , 2022, ss.488 - 500. 10.55730/1300-0152.2634
AMA Gurer D,ERDOGAN VATANSEVER I,Ceylan Ç,Akgül B Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells. . 2022; 488 - 500. 10.55730/1300-0152.2634
Vancouver Gurer D,ERDOGAN VATANSEVER I,Ceylan Ç,Akgül B Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells. . 2022; 488 - 500. 10.55730/1300-0152.2634
IEEE Gurer D,ERDOGAN VATANSEVER I,Ceylan Ç,Akgül B "Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells." , ss.488 - 500, 2022. 10.55730/1300-0152.2634
ISNAD Gurer, Dilek Cansu vd. "Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells". (2022), 488-500. https://doi.org/10.55730/1300-0152.2634
APA Gurer D, ERDOGAN VATANSEVER I, Ceylan Ç, Akgül B (2022). Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells. Turkish Journal of Biology, 46(6), 488 - 500. 10.55730/1300-0152.2634
Chicago Gurer Dilek Cansu,ERDOGAN VATANSEVER IPEK,Ceylan Çağatay,Akgül Bünyamin Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells. Turkish Journal of Biology 46, no.6 (2022): 488 - 500. 10.55730/1300-0152.2634
MLA Gurer Dilek Cansu,ERDOGAN VATANSEVER IPEK,Ceylan Çağatay,Akgül Bünyamin Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells. Turkish Journal of Biology, vol.46, no.6, 2022, ss.488 - 500. 10.55730/1300-0152.2634
AMA Gurer D,ERDOGAN VATANSEVER I,Ceylan Ç,Akgül B Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells. Turkish Journal of Biology. 2022; 46(6): 488 - 500. 10.55730/1300-0152.2634
Vancouver Gurer D,ERDOGAN VATANSEVER I,Ceylan Ç,Akgül B Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells. Turkish Journal of Biology. 2022; 46(6): 488 - 500. 10.55730/1300-0152.2634
IEEE Gurer D,ERDOGAN VATANSEVER I,Ceylan Ç,Akgül B "Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells." Turkish Journal of Biology, 46, ss.488 - 500, 2022. 10.55730/1300-0152.2634
ISNAD Gurer, Dilek Cansu vd. "Knockdown of death receptor 5 antisense long noncoding RNA and cisplatin treatment modulate similar macromolecular and metabolic changes in HeLa cells". Turkish Journal of Biology 46/6 (2022), 488-500. https://doi.org/10.55730/1300-0152.2634