Yıl: 2022 Cilt: 3 Sayı: 2 Sayfa Aralığı: 42 - 47 Metin Dili: İngilizce DOI: 10.56430/japro.1128026 İndeks Tarihi: 10-01-2023

Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods

Öz:
In this study, Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses are used for the microstructure characterisation of Eobania vermiculata samples collected from Iskenderun region. The shells of land snails are discarded as waste; however, they are qualified materials with multiple use areas. To substantiate this proposition, an attempt was made to elucidate the physical and chemical properties of the shells of chocolate band snail, E. vermiculata. SEM observations indicated that nacre crystals are always laminated aragonite, usually presenting sharp edges. Nacre crystallites which pile up into columns vertically abreast aligned observed. The crystals are about 390-155 nm thick, and they form stacks along a fixed spacing, filled with biological matter. The XRD and FTIR observations revealed the dominance of the aragonite form of the calcium carbonate crystal in the microstructures of each snail shell with the occurrence of different shell surface functional groups. Thus, further exploration of the shell inclusive of the organic components is required to promote its possible use as a biocomposite. Nonetheless, the present study provides an overview of physical and chemical characteristics of the land snail shells and inlight their potential use in different areas in the perspective of sustainability.
Anahtar Kelime: Characterization Chocolate band snail Land snail Microstructure SEM

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Addadi, L., Joester, D., Nudelman, F., & Weiner, S. (2006). Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chemistry - A European Journal, 12(4), 980-987. https://doi.org/10. 1002/chem.200500980
  • Agbaje, O. B. A., Wirth, R., Morales, L. F. G., Shirai, K., Kosnik, M., Watanabe, T., & Jacob, D. E. (2017). Architecture of crossed-lamellar bivalve shells: The southern giant clam (Tridacna derasa, Röding, 1798). Royal Society Open Science, 4(9), 170622. https://doi.or g/10.1098/rsos.170622
  • Anjaneyulu, U., Pattanayak, D. K., & Vijayalakshmi, U. (2015). Snail shell derived natural hydroxyapatite: Effects on NIH-3T3 cells for orthopedic applications. Materials and Manufacturing Processes, 31(2), 206- 216. https://doi.org/10.1080/10426914.2015.1070415
  • Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4), 1876-1885. https://doi.org/10.1002/app.20647
  • Checa, A. (2000). A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue and Cell, 32(5), 405-416. https://doi.org/10.1054/tice.20 00.0129
  • Currey, J. D. (1988). Shell form and strength. In E. R. Trueman & M. R. Clarke (Eds.), The Mollusca: Form and function (pp. 183-210). Academic Press. https://doi.org/ 10.1016/B978-0-12-751411-6.50015-1
  • Dauphin, Y. (1999). Infrared spectra and elemental composition in recent biogenic calcites: Relationships between the upsilon 4 band wavelength and Sr and Mg concentrations. Applied Spectroscopy, 53(2), 184-190.
  • Dauphin, Y., Brunelle, A., Medjoubi, K., Somogyi, A., & Cuif, J. P. (2018). The prismatic layer of Pinna: A showcase of methodological problems and preconceived hypotheses. Minerals, 8(9), 365. https://doi.org/10.3390 /min8090365
  • de Paula, S. M., & Silveira, M. (2009). Studies on molluscan shells: Contributions from microscopic and analytical methods. Micron, 40(7), 669-690. https://doi.org/10.101 6/j.micron.2009.05.006
  • Dedov, I. (1998). Annotated check-list of the Bulgarian terrestrial snails (Mollusca, Gastropoda). Linzer Biologische Beiträge, 30(2), 745-765.
  • Feng, Q. L., Cui, F. Z., Pu, G., Wang, R .Z., & Li, H. D. (2000). Crystal orientation, toughening mechanisms and a mimic of nacre. Materials Science and Engineering: C, 11(1), 19-25. https://doi.org/10.1016/S0928-4931(00)0 0138-7
  • Focher, B., Naggi, A., Torri, G., Cosani, A., & Terbojevich, M. (1992). Structural differences between chitin polymorphs and their precipitates from solutions- Evidence from CP-MAS 13C-NMR, FT-IR and FT- Raman spectroscopy. Carbohydrate Polymers, 17(2), 97-102. https://doi.org/10.1016/0144-8617(92)90101-U
  • Godan, D. (1979). Schadschnecken und ihre Bekämpfung. Ulmer.
  • Hedegaard, C. (1997). Shell structures of the recent Vetigastropoda. Journal of Molluscan Studies, 63(3), 369-377. https://doi.org/10.1093/mollus/63.3.369
  • Hossain, A., Bhattacharyya, S. R., & Aditya, G. (2015). Biosorption of cadmium by waste shell dust of fresh water mussel Lamellidens marginalis: Implications for metal bioremediation. ACS Sustainable Chemistry & Engineering, 3(1), 1-8. https://doi.org/10.1021/sc50063 5e
  • Li, T., & Zeng, K. (2012). Nano-hierarchical structure and electromechanical coupling properties of clamshell. Journal of Structural Biology, 180(1), 73-83. https://doi.org/10.1016/j.jsb.2012.06.004
  • Lopes-Lima, M., Rocha, A., Gonçalves, F., Andrade, J., & Machado, J. (2010). Microstructural characterization of inner shell layers in the freshwater bivalve Anodonta cygnea. Journal of Shellfish Research, 29(4), 969-973. https://doi.org/10.2983/035.029.0431
  • Lowenstam, H. A., & Weiner, S. (1989). Biomineralization processes. In H. A. Lowenstam & S. Weiner (Eds.), On biomineralization (pp. 26-49). Oxford University Press. https://doi.org/10.1093/oso/9780195049770.003.0005
  • Machado, J., Reis, M. L., Coimbra, J., & Sá, C. (1991). Studies on chitin and calcification in the inner layers of the shell of Anodonta cygnea. Journal of Comparative Physiology B, 161(4), 413-418. https://doi.org/10.1007/ BF00260802
  • Marxen, J. C., Becker, W., Finke, D., Hasse, B., & Epple, M. (2003). Early mineralization in Biomphalaria glabrata: Microscopic and structural results. Journal of Molluscan Studies, 69(2), 113-121. https://doi.org/10.1093/mollus/ 69.2.113
  • Nielsen, C. (2004). Trochophora larvae: Cell lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 302(1), 35-68. https://doi.org /10.1002/jez.b.20001
  • Örstan, A., Pearce, T. A., & Welter-Schultes, F. (2005). Land snail diversity in a threatened limestone district near Istanbul, Turkey. Animal Biodiversity and Conservation, 28(2), 181-188.
  • Parveen, S., Chakraborty, A., Chanda, D. K., Pramanik, S., Barik, A., & Aditya, G. (2020). Microstructure analysis and chemical and mechanical characterization of the shells of three freshwater snails. ACS Omega, 5(40), 25757-25771. https://doi.org/10.1021/acsomega.0c030 64
  • Rađa, B., Rađa, T., & Šantić, M. (2012). The shell characteristics of land snail Eobania vermiculata (Müller, 1774) from Croatia. The Online Journal of Science and Technology, 2(3), 66-70.
  • Ren, F., Wan, X., Ma, Z., & Su, J. (2009). Study on microstructure and thermodynamics of nacre in mussel shell. Materials Chemistry and Physics, 114(1), 367-370. https://doi.org/10.1016/j.matchemphys.2008.09.036
  • Romana, L., Thomas, P., Bilas, P., Mansot, J. L., Merrifiels, M., Bercion, Y., & Aranda, D. A. (2013). Use of nanoindentation technique for a better understanding of the fracture toughness of Strombus gigas conch shell. Materials Characterization, 76, 55-68. https://doi.org/1 0.1016/j.matchar.2012.11.010
  • Santana, P., & Aldana Aranda, D. (2021). Nacre morphology and chemical composition in Atlantic winged oyster Pteria colymbus (Röding, 1798). PeerJ, 9, e11527. https://doi.org/10.7717/peerj.11527
  • Singh, A., & Purohit, K. M. (2011). Chemical synthesis, characterization and bioactivity evaluation of hydroxyapatite prepared from garden snail (Helix aspersa). Journal of Bioprocessing & Biotechniques, 1, 104. https://doi.org/10.4172/2155-9821.1000104
  • Spann, N., Harper, E. M., & Aldridge, D. C. (2010). The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften, 97(8), 743-751. https://doi.org/10. 1007/s00114-010-0692-9
  • Suzuki, M., & Nagasawa, H. (2013). Mollusk shell structures and their formation mechanism. Canadian Journal of Zoology, 91(6), 349-366. https://doi.org/10.1139/cjz- 2012-0333
  • Waller, T. R. (1980). Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia). Smithsonian Institution Press. https://doi.org/10.5479/si .00810282.313
  • Wang, S. N., Yan, X. H., Wang, R., Yu, D. H., & Wang, X. X. (2013). A microstructural study of individual nacre tablet of Pinctada maxima. Journal of Structural Biology, 183(3), 404-411. https://doi.org/10.1016/j.jsb.2 013.07.013
  • Watabe, N. (1988). Shell structure. In E. R. Trueman & M. R. Clarke (Eds.), The Mollusca: Form and function (pp. 69- 104). Academic Press. https://doi.org/10.1016/B978-0- 12-751411-6.50011-4
  • Weir, C. E., & Lippincott, E. R. (1961). Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. Journal of Research of the National Bureau of Standards-A. Physics and Chemistry, 65(3), 173-183. https://doi.org/10.6028%2Fj res.065A.021
  • Welter Schultes, F. W., & Williams, M. R. (1999). History, island area and habitat availability determine land snail species richness of Aegean islands. Journal of Biogeography, 26(2), 239-249.
  • Zhang, G., & Li, X. (2012). Uncovering aragonite nanoparticle self-assembly in nacre-A natural armor. Crystal Growth & Design, 12(9), 4306-4310. https://doi.org/10.1021/cg 3010344
APA ÖKSÜZ K, SEREFLISAN H (2022). Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods. , 42 - 47. 10.56430/japro.1128026
Chicago ÖKSÜZ Kerim Emre,SEREFLISAN HÜLYA Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods. (2022): 42 - 47. 10.56430/japro.1128026
MLA ÖKSÜZ Kerim Emre,SEREFLISAN HÜLYA Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods. , 2022, ss.42 - 47. 10.56430/japro.1128026
AMA ÖKSÜZ K,SEREFLISAN H Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods. . 2022; 42 - 47. 10.56430/japro.1128026
Vancouver ÖKSÜZ K,SEREFLISAN H Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods. . 2022; 42 - 47. 10.56430/japro.1128026
IEEE ÖKSÜZ K,SEREFLISAN H "Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods." , ss.42 - 47, 2022. 10.56430/japro.1128026
ISNAD ÖKSÜZ, Kerim Emre - SEREFLISAN, HÜLYA. "Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods". (2022), 42-47. https://doi.org/10.56430/japro.1128026
APA ÖKSÜZ K, SEREFLISAN H (2022). Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods. Journal of agricultural production (Online), 3(2), 42 - 47. 10.56430/japro.1128026
Chicago ÖKSÜZ Kerim Emre,SEREFLISAN HÜLYA Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods. Journal of agricultural production (Online) 3, no.2 (2022): 42 - 47. 10.56430/japro.1128026
MLA ÖKSÜZ Kerim Emre,SEREFLISAN HÜLYA Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods. Journal of agricultural production (Online), vol.3, no.2, 2022, ss.42 - 47. 10.56430/japro.1128026
AMA ÖKSÜZ K,SEREFLISAN H Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods. Journal of agricultural production (Online). 2022; 3(2): 42 - 47. 10.56430/japro.1128026
Vancouver ÖKSÜZ K,SEREFLISAN H Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods. Journal of agricultural production (Online). 2022; 3(2): 42 - 47. 10.56430/japro.1128026
IEEE ÖKSÜZ K,SEREFLISAN H "Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods." Journal of agricultural production (Online), 3, ss.42 - 47, 2022. 10.56430/japro.1128026
ISNAD ÖKSÜZ, Kerim Emre - SEREFLISAN, HÜLYA. "Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods". Journal of agricultural production (Online) 3/2 (2022), 42-47. https://doi.org/10.56430/japro.1128026