Yıl: 2022 Cilt: 9 Sayı: Özel Sayı Sayfa Aralığı: 342 - 354 Metin Dili: Türkçe DOI: 10.17568/ogmoad.1096193 İndeks Tarihi: 13-01-2023

Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış

Öz:
Hayat Boyu Değerlendirme (LCA) bir ürün sisteminin yaşamı boyunca çevresel yönlerini ve potansiyel çevresel etkilerini ele alan bir teknik olup elde edilen veriler; karar verme, stratejik planlama, öncelik belirleme ve tasarlama çalışmalarında kullanılır. Bu çalışmada; LCA ve odun esaslı levha sektörü ilişkisi, sektörün çevreye etkileri, alınabilecek önlemler ve gelecekte planlanabilecek LCA çalışmaları ile ilgili olarak literatür bilgisi verilmiştir. Özellikle odun hammaddesinin fabrikalara taşınması, üretim ve levhaların satış notlarına taşınması, kullanımı ve ekonomik ömrünü tamamlayan levhaların tekrar değerlendirilmesi sırasındaki çevresel etkilerinin belirlenmesi tanımlanmıştır. Dünya orman ürünleri sektöründe uygulanan LCA yaklaşımları, faydaları, güçlü ve zayıf yönlerine bağlı potansiyel etkilerinin değerlendirilmesi yapılmıştır. Son olarak, bir simülasyon uygulaması incelenmiştir. Yapılan bu çalışma sonucunda odun esaslı levhaların yenilenebilir kaynaklardan üretilerek sürdürülebilir olması, potansiyel ikame malzemelerinden düşük enerji gerektirmesi, atık hacminin değerlendirilebilmesi avantajlarına sahip olduğu ve petrokimyasal tutkalların yerine yeşil formülasyonlarla üretim sağlanırsa ekosistem ve iklim değişikliği üzerinde olumlu sonuçlar oluşturacağı belirlenmiştir.
Anahtar Kelime: Odun esaslı levhalar Yaşam Döngüsü Analizi iklim değişikliği karbon emisyon

An overview of Life Cycle Analysis in the wood-based panel industry

Öz:
Life Cycle Assessment (LCA) is a technique that considers the environmental aspects and potential environmental impacts of a product system throughout its lifetime. The data obtained are evaluated in decision making, strategic planning, priority setting and design studies. In this study, literature information was given about the relationship between LCA and the wood-based panel sector, the positive and negative effects of the sector on the environment, the measures that can be taken, and the LCA studies that can be planned for the sector in the future. In particular, the methods of determining the effects during the transportation of wood material to the factories, production, transfer of the plates to the sales notes after production, the usage process and the evaluation of the boards that have completed their economic life were defined. The potential effects of the LCA approach applied in the world forest products sector, their benefits, strengths, and weaknesses were evaluated. Finally, a simulation application is examined. As a result of this study, it is seen that wood-based boards have the advantages of being sustainable by being produced from renewable resources, requiring less energy than potential substitute materials, and evaluating the waste volume after use. In addition, it has been determined that if it is produced with green formulations instead of petrochemical adhesives, it will create positive results for the ecosystem and climate change.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Baharoglu, M., Nemli, G., Sarı, B., Bardak, S., Ayrılmıs, N., 2012. The influence of moisture content of raw ma- terial on the physical and mechanical properties, surface roughness, wettability, and formaldehyde emission of particleboard composite. Composites Part B: Enginee- ring, 43(5), 2448-2451.
  • Barata, T., Q., F., Rodrigues, O., V., Matos, B., M., Pinto, R., S., 2016. Furniture design using MDF boards appl- ying concepts of sustainability. Product: Management and Development 14(1), 68-83.
  • Brunet-Navarro, P., Jochheim, H., Cardellini, G., Rich- ter, K., Muys, B., 2021. Climate mitigation by energy and material substitution of wood products has an expiry date. Journal of Cleaner Production 303, 127026.
  • Burton, I., 1987. Report on reports: Our Common Fu- ture: the World Commission on Environment and De- velopment. Environment: Science and Policy for Sustai- nable Development 29(5), 25-29.
  • Boyd C., W., Koch, P., McKean H., B., Morschauser C., R., Preston S., B., Wangaard F., F., 1976. Wood for structural and architectural purposes. Forest Products Journal 27: 10-20.
  • Chiarabaglio, P., M., Deidda, A., Bergante, S., Castro, G., Faciotto, G., Giorcelli, A., Carbonaro, C., 2020. Life Cycle Assessment (LCA): new poplar clones allow an environmentally sustainable cultivation. Annals of Silvi- cultural Research 45(1), 76-82.
  • Chomkhamsri, K., Wolf, M., A., Pant, R., 2011. Internati- onal Reference Life Cycle Data System (ILCD) Handbo- ok: review schemes for Life Cycle Assessment. Towards Life Cycle Sustainability Management, 107-117.
  • Ciannamea, E., M., Marin, D., C., Ruseckaite, R., A., Stefani, P., M., 2017. Particleboard based on rice husk: effect of binder content and processing conditions. Jour- nal of renewable materials, 5(5), 357-362.
  • Cordella, M., Hidalgo, C., 2016. analysis of key environmental areas in the design and labelling of furniture products: application of a screening approach based on a literature review of LCA studies. Sustainable Producti- on and Consumption 8, 64-77.
  • Crafford, P., L., Wessels, C., B., Blumentritt, M., 2021. Sustainability and wood constructions: a review of Gre- en Building Rating Systems and Life-Cycle Assessment Methods from a South African and developing world perspective. Advances in Building Energy Research 15 (1), 67-86.
  • De Carvalho Araujo, C. K., Salvador, R., Moro Piekars- ki, C., Sokulski, C., C., de Francisco, A. C., de Carvalho Araújo Camargo, S., K., 2019. Circular economy practi - ces on wood panels: a bibliographic analysis. Sustaina- bility 11(4), 1057.
  • Diederichs, S., K., 2014. 2010 Status Quo for Life Cycle İnventory and Environmental İmpact Assessment of wo- od-based panel products in Germany, Wood and Fiber Science 46(3), 340-355.
  • Del Borghi, A., Parodi, S., Moreschi, L., Gallo, M., 2021. Sustainable packaging: an evaluation of crates for food through a life cycle approach. The International Journal of LCA 26(4), 753-766.
  • Donatello, S., Moons, H., Wolf, O., 2017. Revision of EU ecolabel criteria for furniture products. European Com- mission. Available online: http://ec. europa. eu/environ- ment/ecolabel/documents/technical_report_ furniture. pdf (Ziyaret tarihi: 1 Şubat 2021).
  • Dos Santos, M., F., N., Rosane Ap G, B., Bezerra, B., S., Varum, H., S., 2014. Comparative Study of the Life Cyc- le Assessment of particleboards made of residues from Sugarcane Bagasse (Saccharum spp.) and Pine Wood shavings (Pinus elliottii). Journal of Cleaner Producti- on 64, 345-355.
  • Eriksson, E., Gillespie, A. R., Gustavsson, L., Langvall, O., Olsson, M., Sathre, R., Stendahl, J., 2007. Integra- ted carbon analysis of forest management practices and wood substitution. Canadian Journal of Forest Resear- ch 37(3), 671-681.
  • E.C., 2011. Roadmap to a resource efficient Europe.
  • E.C., 2015. Closing the Loop-An EU action Plan for the Circular Economy. COM/2015/0614 final.
  • E.C., 2020. A new Circular Economy Action Plan. For a Cleaner and More Competitive Europe. E.C, Brussels, Belgium. https://ec.europa.eu/environment/circular-eco- nomy/index_en.htm (Ziyaret tarihi: 27 Nisan 2020).
  • Forrest, A., Hilton, M., Ballinger, A., Whittaker, D., 2017. Circular economy opportunities in the Furniture Sector. European Environmental Bureau: Brussels, Bel- gium.
  • Forsell, N., Korosuo, A., Fedeirici, S., Gusti, M., Rin- cón-Cristóbal, J. J., Rüter, S., Gardiner, J., 2018. Gui- dance on developing and reporting the Forest Reference Levels in accordance with Regulation (EU) 2018/841.
  • Geng, A., Ning, Z., Zhang, H., Yang, H., 2019. Quantif- ying the climate change mitigation potential of China’s Furniture Sector: Wood Substitution Benefits on Emis- sion Reduction. Ecological Indicators 103, 363-372.
  • Gonzalez-Garcia, S., Feijoo, G., Widsten, P., Kandel- bauer, A., Zikulnig-Rusch, E., Moreira, M., T., 2009. Environmental performance assessment of hardboard manufacture. The International Journal of Life Cycle Assessment, 14(5), 456-466.
  • Gonzalez-Garcia, S., Ferro, F., S., Silva, D., A., L., Fe- ijoo, G., Lahr, F., A., R., Moreira, M., T., 2019. Cross- country comparison on environmental impacts of par- ticleboard production in Brazil and Spain. Resources, Conservation and Recycling 150, 104434.
  • Gonzalez-Garcia, S., Bacenetti, J., Murphy, R., J., Fiala, M., 2012. Present and future environmental impact of Poplar cultivation in the Po Valley (Italy) under different crop management systems. Journal of Cleaner Produc- tion 26, 56-66.
  • Gonzalez-Garcia, S., Hospido, A., Moreira, M., T., Ro- mero, J., Feijoo, G, 2009. Environmental impact assess - ment of total chlorine free pulp from Eucalyptus glo- bulus in Spain. Journal of Cleaner Production 17(11): 1010–1016.
  • Heijungs, R., Guinee J., B., Huppes G., Lankreijer R., M., Udo de Haes H., A., Wegener G., Sieeswijk, A., An- sems A., M., M., Eggels P.G., Van Duin R., De Goede H., P., 1992. Environmental Life Cycle Assessment of pro- ducts, guide and backgrounds. Centre of Environmental Science, Leiden.
  • Hossain, M., U., Wang, L., Iris, K., M., Tsang, D., C., Poon, C., S., 2018. Environmental and technical feasi- bility study of upcycling wood waste into cement-bon- ded particleboard. Construction and Building Materi- als, 173, 474-480.
  • Hoxha, E., Jusselme, T., 2017. On the necessity of imp- roving the environmental impacts of furniture and app- liances in net-zero energy buildings. Science of the Total Environment 596, 405-416.
  • IEA, CO2 emissions from fuel combustion highlights, 2018. www.iea.org/ CO2emissions-from-fuel-combus- tion-2018-highlights. (Erişim Tarihi:25 Haziran 2019).
  • IPCC, 1994. Intergovernmental Panel on Climate Chan- ge. Radiative Forcing of Climate Change (IPCC, ipcc. ch). The 1994 report to the Scientific Assessment Wor- king Group of IPCC, Summary for Policymakers.
  • IPCC, 2013. Summary for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK. Climate Change 2013: The Physical Science Basis. contribution of working group ı to the fifth assessment Report of the Intergovernmental Panel on Climate Change. Cambrid- ge, UK and New York, NY, USA: Cambridge University.
  • ISO, 2006. International Organization for Standardizati- on (ISO, iso.org), Environmental management: life cycleassessment; requirements and guidelines (Vol. 14044). Geneva, Switzerland.
  • ISO, 1997a. Environmental Management - Life Cyc- le Assessment - Principles and Framework, prEN ISO 14040.
  • ISO, 1997b. Environmental Management - Life Cycle Assessment - Goal and Scope Definition and Life Cycle Inventory Analysis, DIS 14041.
  • ISO, 1997c. Environmental Management - Life Cycle Assessment - Life Cycle Impact Assessment. CD 14042.
  • ISO, l997d. Environmental Management - Life Cycle Assessment - Life Cycle Interpretation. CD 14043.
  • Imam, S., H., Mao, L., Chen, L., Greene, R., V., 1999. Wood adhesive from crosslinked poly (vinyl alcohol) and partially gelatinized starch: preparation and proper- ties. Starch Stärke, 51(6), 225-229.
  • Iritani, D., R., Silva, D., L., Saavedra, Y., M., B., Gra- el, P., F., F., Ometto, A., R., 2015. Sustainable strategies analysis through Life Cycle Assessment: a case study in a furniture industry. Journal of Cleaner Production 96, 308-318.
  • Japanese Standards Association, 2014. JIS A 5905: fi- berboards. Japanese Standards Association, Tokyo.
  • Japanese Standards Association, 2015. JIS A 5908: par- ticleboards. Japanese Standards Association, Tokyo.
  • Kohlmaier, G., H., Weber, M., Houghton, R., A., 2013. Carbon dioxide mitigation in forestry and wood industry. Springer Science, Business Media.
  • Kouchaki-Penchah, H., Sharifi, M., Mousazadeh, H., Zarea-Hosseinabadi, H., Nabavi-Pelesaraei, A. (2016). Gate to gate life cycle assessment of flat pressed partic- leboard production in Islamic Republic of Iran. Journal of cleaner production, 112, 343-350.
  • Kristak, L., Antov, P., Bekhta, P., Lubis, M., A., R., Iswanto, A., H., Reh, R., Hejna, A., 2022. Recent prog- ress in ultra-low formaldehyde emitting adhesive sys- tems and formaldehyde scavengers in wood-based pan- els: a review. Wood Material Science & Engineering, 1-20.
  • Linkosalmi, L., Husgafvel, R., Fomkin, A., Junnikkala, H., Witikkala, T., Kairi, M., Dahl, O. 2016. Main Green- house Gas Emissions of Wood-Based Furniture İndustry in Finland. Journal of Cleaner Production 113, 596-605.
  • Lippke, B., Oneil, E., Harrison, R., Skog, K., Gustavsson, L., Sathre, R., 2011. Life cycle impacts of forest manage- ment and wood utilization on carbon mitigation: knowns and unknowns, Carbon Management 2(3), 303-333.
  • Lovarelli, D., Fusi, A., Pretolani, R., Bacenetti, J., 2018. Delving the environmental impact of Roundwood pro- duction from Poplar Plantations. Science of the Total En- vironment 645, 646-654.
  • Mathias, J., D., Grediac, M., Michaud, P., 2016. Bio-ba- sed adhesives. In biopolymers and biotech admixtures for eco-efficient construction materials 369-385. Wood- head Publishing.
  • Mirabella, N., Castellani, V., Sala, S., 2014. LCA for assessing environmental benefit of eco-design strategi- es and forest wood short supply chain: a furniture case study. The International Journal of Life Cycle Assess- ment 19(8), 1536-1550.
  • Moltesen, A., Bjorn, A., 2018. LCA and Sustainability. In Life Cycle Assessment, 43-55, Springer, Cham.
  • Nakano, K., Ando, K., Takigawa, M., Hattori, N., 2018. Life Cycle Assessment of wood-based boards produced in Japan and impact of formaldehyde emissions during the use stage. The International Journal of Life Cycle Assessment 23(4), 957-969.
  • Netz, B., Davidson, O., R., Bosch, P., R., Dave, R., Me- yer, L., A., 2007. Climate change 2007: mitigation. con- tribution of Working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Chan- ge. Summary for Policymakers.
  • Oneil, E., Wilson, C., J., 2013a. Cradle to gate life cycle assessment of US particleboard production, Teknik Ra- por. DOI: 10.13140/RG.2.2.12807.60327
  • Oneil, E., Wilson, C., J., 2013b. Cradle to gate life cycle assessment of US medium density fiberboard producti- on. Final Raporu. https://corrim.org/wp-content/uplo- ads/2018/06/MDF-LCA-final-Sept-2013.pdf
  • Pearce, W., Holmberg, K., Hellsten, I., Nerlich, B., 2014. Climate change on twitter: topics, communities and conversations about the 2013 IPCC Working Group 1 report. PloS one 9(4), e94785.
  • Pezzey, J., 1992. Sustainable development concepts—an economic analysis. World Bank Environment, 2. The World Bank, Washington DC.
  • Penalver, S., M., R., Molina, M., R., Ballesta, J., A., C., 2014. Direct and indirect generation of waste in the Spa- nish Paper İndustry. Waste management 34(1), 3-11.
  • Piekarski, C., M., Francisco, A., C., D., Luz, L., M., D., Alvarenga, T., H., D., P., Bittencourt, J., V., M., 2014. Environmental profile analysis of MDF panels produc- tion: study in a Brazilian technological condition. Cer- ne 20(3), 409-418.
  • Piekarski, C., M., de Francisco, A., C., da Luz, L., M., Kovaleski, J., L., Silva, D. A. L., 2017. Life Cycle As- sessment of Medium-Density Fiberboard (MDF) manu- facturing process in Brazil. Science of the Total Envi- ronment 575, 103-111.
  • Puettmann, M., Bergman, R., Oneil, E., 2016. Cradle to gate Life Cycle Assessment of North American cellulo- sic fiberboard production. CORRIM Final Report. Uni- versity of Washington. Seattle, 1-66.
  • Pommier, R., Grimaud, G., Prinçaud, M., Perry, N.,Sonnemann, G., 2016. LCA (Life Cycle Assessment) of EVP–engineering veneer product: plywood glued using a vacuum moulding technology from green vene- ers. Journal of Cleaner Production 124, 383-394.
  • Remmen, A., 2007. Life cycle management: a business guide to sustainability. UNEP/Earthprint.
  • Richter, K., 1995. Life Cycle Analysis of Wood Produ- cts, Lıfe-Cycle Analysıs 69.
  • Richter, K., 1998. Life cycle assessment of wood produ- cts, In Carbon dioxide mitigation in forestry and wood industry 219-248. Springer, Berlin, Heidelberg.
  • Rivela, B., Hospido, A., Moreira, T., Feijoo, G., 2006. Life Cycle İnventory of particleboard: a case study in the wood sector (8 pp). The International Journal of Life Cycle Assessment 11(2), 106-113.
  • Rivela, B., Moreira, M., T., Feijoo, G., 2007. Life cycle inventory of medium density fibreboard. The Internati- onal Journal of Life Cycle Assessment, 12(3), 143-150.
  • Rosenbaum, R., K., 2017. Selection of impact categories, category indicators and characterization models in goal and scope definition. In goal and scope definition in Life Cycle Assessment. 63-122, Springer, Dordrecht.
  • Rosenbaum, R., K., Hauschild, M., Z., Boulay, A., M., Fantke, P., Laurent, A., Núñez, M., Vieira, M., 2018. Life cycle impact assessment. In Life cycle assessment 167- 270. Springer, Cham.
  • Sathre, R., Gonzalez-Garcia, S., 2014. Life cycle assess- ment (LCA) of wood-based building materials. In Eco- efficient construction and building materials, Woodhead Publishing, 311-337. DOI: 10.1533/9780857097729.2.311
  • Sathre, R., Gustavsson, L., 2009. Using wood products to mitigate climate change: external costs and structural change, Applied Energy 86(2), 251–257.
  • Sathre, R., O’Connor, J., 2013. A synthesis of research on wood products and greenhouse gas impacts, desLibris.
  • Sathre, R., O’Connor, J., 2010. Meta-analysis of green- house gas displacement factors of wood product substi- tution. Environmental science & policy 13(2), 104-114.
  • Schmidheiny, S., Stigson, B., 2000. Eco-efficiency: creating more value with less impact. World Business Council for Sustainable Development.
  • Schulz, H., 1993. The development of wood utilization in the 19th, 20th and 21st centuries. The Forestry Chronic- le 69(4), 413-418.
  • SETAC, 1993. Guidelines for Life Cycle Assessment: a code of practice, the SETAC Workshop Held at Sesimb- ra, Portugal, 31 March-3 April 1993.
  • Shang, X., Song, S., Yang, J., 2020. Comparative envi- ronmental evaluation of straw resources by LCA in Chi- na. Advances in Materials Science and Engineering.
  • Silva, D., A., L., Lahr, F., A., R., Garcia, R., P., Freire, F., M., C., S., Ometto, A., R., 2013. Life cycle assessment of medium density particleboard (MDP) produced in Brazil. The International Journal of Life Cycle Assess- ment 18(7), 1404-1411.
  • Tserpes, K., Tzatzadakis, V. 2022. Life-Cycle Analysis and evaluation of mechanical properties of a bio-based structural adhesive. Aerospace 9(2), 64.
  • Wang, S., Wang, W., Yang, H., 2018. Comparison of pro- duct carbon footprint protocols: case study on medium- density fiberboard in China. International Journal Of Environmental Research And Public Health 15(10), 2060.
  • WBCSD, 2000. Eco-efficiency—creating more value with less ımpact. World Business Council for Sustainab- le Development, Washington DC.
  • Wenker, J., L., Richter, K., Rüter, S., 2018. A methodical approach for systematic life cycle assessment of wood based furniture. Journal of Industrial Ecology 22(4), 671-685.
  • Werner, F., Richter, K., 2007. Wooden building products in comparative LCA. The International Journal of Life Cycle Assessment 12(7), 470-479.
  • Wilson, J., B., 2010. Life-cycle inventory of medium density fiberboard in terms of resources, emissions, energy and carbon. Wood and Fiber Science 42, 107-124.
  • Wirth, D., A., 2013. The International Organization for Standardization: Private voluntary standards as swords and shields. In Research Handbook on Environment, Health and the WTO. Edward Elgar Publishing.
  • Wu, P., Xia, B., Zhao, X., 2014. The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete–a review. Renewable and Sustainable Energy Reviews 37, 360-369.
APA ŞAHİN M, Kalaycıoglu H, ARAS U (2022). Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış. , 342 - 354. 10.17568/ogmoad.1096193
Chicago ŞAHİN Mehmet Eren,Kalaycıoglu Hulya,ARAS UGUR Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış. (2022): 342 - 354. 10.17568/ogmoad.1096193
MLA ŞAHİN Mehmet Eren,Kalaycıoglu Hulya,ARAS UGUR Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış. , 2022, ss.342 - 354. 10.17568/ogmoad.1096193
AMA ŞAHİN M,Kalaycıoglu H,ARAS U Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış. . 2022; 342 - 354. 10.17568/ogmoad.1096193
Vancouver ŞAHİN M,Kalaycıoglu H,ARAS U Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış. . 2022; 342 - 354. 10.17568/ogmoad.1096193
IEEE ŞAHİN M,Kalaycıoglu H,ARAS U "Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış." , ss.342 - 354, 2022. 10.17568/ogmoad.1096193
ISNAD ŞAHİN, Mehmet Eren vd. "Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış". (2022), 342-354. https://doi.org/10.17568/ogmoad.1096193
APA ŞAHİN M, Kalaycıoglu H, ARAS U (2022). Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış. Ormancılık Araştırma Dergisi, 9(Özel Sayı), 342 - 354. 10.17568/ogmoad.1096193
Chicago ŞAHİN Mehmet Eren,Kalaycıoglu Hulya,ARAS UGUR Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış. Ormancılık Araştırma Dergisi 9, no.Özel Sayı (2022): 342 - 354. 10.17568/ogmoad.1096193
MLA ŞAHİN Mehmet Eren,Kalaycıoglu Hulya,ARAS UGUR Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış. Ormancılık Araştırma Dergisi, vol.9, no.Özel Sayı, 2022, ss.342 - 354. 10.17568/ogmoad.1096193
AMA ŞAHİN M,Kalaycıoglu H,ARAS U Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış. Ormancılık Araştırma Dergisi. 2022; 9(Özel Sayı): 342 - 354. 10.17568/ogmoad.1096193
Vancouver ŞAHİN M,Kalaycıoglu H,ARAS U Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış. Ormancılık Araştırma Dergisi. 2022; 9(Özel Sayı): 342 - 354. 10.17568/ogmoad.1096193
IEEE ŞAHİN M,Kalaycıoglu H,ARAS U "Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış." Ormancılık Araştırma Dergisi, 9, ss.342 - 354, 2022. 10.17568/ogmoad.1096193
ISNAD ŞAHİN, Mehmet Eren vd. "Odun esaslı levha sektöründe Yaşam Döngüsü Analizi’ne bir bakış". Ormancılık Araştırma Dergisi 9/Özel Sayı (2022), 342-354. https://doi.org/10.17568/ogmoad.1096193