Yıl: 2022 Cilt: 19 Sayı: 1 Sayfa Aralığı: 204 - 214 Metin Dili: İngilizce DOI: 10.33462/jotaf.976990 İndeks Tarihi: 15-01-2023

Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues

Öz:
Palm pruning residues are potential pellet raw material, which are quite abundant in regions with hot climates. In pelletizing process, raw material properties and pellet machine features are the main factors affecting the final pellet quality. In this study, 5 mm sieve hole diameter milled palm pruning residues was pelleted using two different pellet dies and two different pelletizing moisture. First die (D1) has 25 mm total length, 17° inlet angle and 10 mm inlet depth. The second die (D2) has 35 mm total length, 33° inlet angle and 5 mm inlet depth. The inlet and outlet hole diameter of both die are 11 mm and 8 mm, respectively. Pelleting moisture is fixed at two different levels as 10% (M10) and 14% (M14). The change of production parameters and pellet physical properties were investigated according to the die type and moisture content parameters. Increasing pelletizing moisture had a positive effect on the production capacity and it was obtained as 82.44, 103.1, 134.05, 145.49 kg h-1 for D1-M10, D1-M14, D2-M10 and D2-M14 pellets, respectively. The increase in pelletizing moisture caused degradation of the pellet forms, which is more evident in the pellets produced in the D1 die. Pellets produced in the D2 die are more compressed and denser and lower moisture content. The increase in total die length resulted in heavier and denser pellet production, resulting in higher production capacity and low specific energy consumption. Pellet durability index (%, ar) of D1-M10, D1-M14, D2-M10 and D2-M14 were measured as 95.53; 92.29 and 97.74; 98.32, respectively. It was concluded that the longer active die length can tolerate high moisture content pelletizing, and durable pellets can be produced in a wide moisture content range. In addition, die conical dimensions and die length are the factors that needs to be optimized according to different raw materials.
Anahtar Kelime: Biomass Pellet die L/D ratio Compression Durability ENplus®

Palmiye Budama Artıklarının Peletlenmesinde Pelet Kalıp Geometrisi ve Peletleme Neminin Etkisi

Öz:
Palmiye budama artıkları pelet yakıtı olarak değerlendirilme potansiyeli bulunan, özellikle sıcak iklimlerde oldukça fazla miktarda ortaya çıkan artıklardır. Peletleme işleminde hammadde özellikleri ve pelet makinesi özellikleri pelet kalitesini belirleyen unsurlardır. Bu çalışmada, 5 mm elek delik çapına sahip çekiçli değirmende öğütülen palmiye budama artıkları iki farklı peletleme nemi ve iki farklı pelet kalıbında peletlenmiştir. İlk kalıp (D1) 25 mm toplam uzunluk, 17° giriş açısı ve 10 mm giriş derinliğine sahiptir. İkinci kalıp (D2) 35 mm toplam uzunluk, 33° giriş açısı ve 5 mm giriş derinliğine sahiptir. Her iki kalıbın giriş çapı 11 mm ve çıkış çapı 8 mm’dir. Peletleme nemleri %10 (M10) ve %14 (M14) olarak belirlenmiştir. Peletleme nemi ve pelet kalıbı değişkenlerine göre üretim parametreleri ve pelet fiziksel özellikleri incelenmiştir. Peletleme neminin artışı üretim kapasitesinde artışa neden olmuş, D1-M10, D1-M14, D2-M10 ve D2-M14 peletleri için sırasıyla 82.44, 103.1, 134.05, 145.49 kg h-1 olarak hesaplanmıştır. Pelet formu peletleme neminin artışıyla bozunmaya uğramıştır, bu durum D1 kalıbında daha belirgindir. D2 kalıbında üretilen peletler daha fazla sıkışmaya maruz kalarak daha yoğun ve düşük nem içerğine sahiptir. Toplam kalıp uzunluğunun artışı pelet kütlesinde artışa neden olarak daha yoğun peletler üretilmesini sağlamıştır. Bu nedenle D2 kalıbında üretilen peletlerin yoğunluğu ve üretim kapasitesi artmış, özgül enerji tüketimi azalmıştır. Pelet dayanıklılık dirençleri (%), D1-M10, D1-M14, D2-M10 veD2-M14 peletleri için sırasıyla 95.53; 92.29 ve 97.74; 98.32 olarak hesaplanmıştır. Çalışma sonunda, kalıp aktif uzunluğunun yüksek nem içeriğindeki peletleme işlemini tolere ederek geniş peletleme nemi aralığında dayanıklı peletler üretilebileceği sonucuna varılmıştır. Pelet kalıbı deliklerinin koniklik ölçüleri ve kalıp kalınlığının farklı hammaddelere göre optimize edilmesi gerekmektedir.
Anahtar Kelime: Biyokütle Pelet kalıbı L/D oranı Sıkıştırma Dayanıklılık ENplus®

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • American Society of Agricultural & Biological Engineers. (2012). ASAE S269.5 Densified Products for Bulk Handling -- Cubes, Pellets, and Crumbles - Definitions and Methods for Determining Density, Durability, and Moisture Content. ASAE Standard. St. Joseph, Michigan, U.S.A.
  • Atay, O. A. (2016). Yağ Gülü Damıtma Atıkları , Kızılçam Kabuğu ve Linyit Kömür Tozundan Elde Edilen Peletlerin Baca Gazı Emisyonlarının Belirlenmesi Measurement of Flue Gas Emission of Pellets Obtained from the Mixture of Rose Oil Processing Wastes , Lignite Coal Dust and P, 13(02), 1–9.
  • Ben Hnich, K., Khila, Z. and Hajjaji, N. (2020). Comprehensive study of three configurations coproducing synthetic fuels and electricity from palm residue via Fischer-Tropsch process. Energy, 205, 118027. doi:10.1016/j.energy.2020.118027
  • Bourmaud, A., Dhakal, H., Habrant, A., Padovani, J., Siniscalco, D., Ramage, M. H., Shah, D. U. (2017). Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Composites Part A: Applied Science and Manufacturing, 103, 292–303. doi:10.1016/j.compositesa.2017.10.017
  • Calderón, C., Colla, M., Jossart, J.-M., Hemeleers, N., Cancian, G., Aveni, N. and Caferri, C. (2019). BioEnergy Europe Statiscital Report (Vol. 1). Place du Champ de Mars 2A 1050 Brussels. doi:10.1017/CBO9781107415324.004
  • Cheng, J., Zhou, F., Si, T., Zhou, J. and Cen, K. (2018). Mechanical strength and combustion properties of biomass pellets prepared with coal tar residue as a binder. Fuel Processing Technology, 179(July), 229–237. doi:10.1016/j.fuproc.2018.07.011
  • Chicatto, J. A., Rainert, K. T., Gonçalves, M. J., Helm, C. V., Altmajer-Vaz, D. and Tavares, L. B. B. (2018). Decolorization of textile industry wastewater in solid state fermentation with peach-palm (Bactris gasipaes) residue. Brazilian Journal of Biology, 78(4), 718–727. doi:10.1590/1519-6984.175074
  • Diken, B. and Kayişoǧlu, B. (2020). A research on the determination of the gasification performance of grass pellets. Journal of Tekirdag Agricultural Faculty, 17(1), 24–36. doi:10.33462/jotaf.538347
  • Döring, S. (2013). Power from pellets: Technology and applications. Power from Pellets: Technology and Applications, 9783642199, 1–223. doi:10.1007/978-3-642-19962-2
  • EN 15210-1. (2009). Solid biofuels - Determination of mechanical durability of pellets and briquettes - Part 1: Pellets.
  • EN 16127. (2012). Solid biofuels. Determination of length and diameter of pellets.
  • EN15103. (2010). Solid Biofuels- Determination of Bulk Density.
  • ENplus. (2015). Pellet Quality Requirements. ENplus Handbook. Place du Champ de Mars 2 1050 Brussels, Belgium. https://www.enpluspellets. eu/en-in/resources-en-in/technical-documentation-en-in.html#handbook
  • Gilbert, P., Ryu, C., Sharifi, V. and Swithenbank, J. (2009). Effect of process parameters on pelletisation of herbaceous crops. Fuel, 88(8),1491–1497. doi:10.1016/j.fuel.2009.03.015
  • Ginting, A., Mawardi, I., Jannifar, A., Semaun Hasyim, S. and Razali Anzieb, M. (2019). Effectiveness of die hole on wood pellet density quality improvement. IOP Conference Series: Earth and Environmental Science, 268(1). doi:10.1088/1755-1315/268/1/012166
  • Hosseini, S. E. and Wahid, M. A. (2014). Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia. Renewable and Sustainable Energy Reviews, 40, 621–632. doi:10.1016/j.rser.2014.07.214
  • Jiang, L., Yuan, X., Xiao, Z., Liang, J., Li, H., Cao, L., Zeng, G. (2016). A comparative study of biomass pellet and biomass-sludge mixed pellet: Energy input and pellet properties. Energy Conversion and Management, 126, 509–515. doi:10.1016/j.enconman.2016.08.035
  • Juszczak, M. and Lossy, K. (2012). Pollutant emission from a heat station supplied with agriculture biomass and wood pellet mixture. Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa, 33(2), 231–242. doi:10.2478/v10176-012-0020-3
  • Kaliyan, N. and Morey, R. V. (2010). Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology, 101(3), 1082–1090. doi:10.1016/j.biortech.2009.08.064
  • Larsson, S. H., Rudolfsson, M., Thyrel, M., Örberg, H., Kalén, G., Wallin, M. and Lestander, T. A. (2012). Temperature controlled feed layer formation in biofuel pellet production. Fuel, 94, 81–85. doi:10.1016/j.fuel.2011.12.012
  • Lehtikangas, P. (2001). Quality properties of pelletised sawdust, logging residues and bark. Biomass and Bioenergy, 20(5), 351–360. doi:10.1016/S0961-9534(00)00092-1
  • Liu, H., Chaney, J., Li, J. and Sun, C. (2013). Control of NOx emissions of a domestic/small-scale biomass pellet boiler by air staging. Fuel, 103, 792–798. doi:10.1016/j.fuel.2012.10.028
  • Liu, H., Qiu, G., Shao, Y. and Riffat, S. B. (2010). Experimental investigation on flue gas emissions of a domestic biomass boiler under normal and idle combustion conditions. International Journal of Low-Carbon Technologies, 5(2), 88–95. doi:10.1093/ijlct/ctq006
  • Miladinovic, D. (2014). Optimising press settings contributes to better pellet quality, (January 2005). Mirmehdi, S. M., Zeinaly, F. and Dabbagh, F. (2014). Date palm wood flour as filler of linear low-density polyethylene. Composites Part B: Engineering, 56, 137–141. doi:10.1016/j.compositesb.2013.08.008
  • Monedero, E., Portero, H. and Lapuerta, M. (2015). Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Processing Technology, 132(2015), 15–23. doi:10.1016/j.fuproc.2014.12.013
  • Moon, Y.-H., Yang, J., Koo, B.-C., An, J.-W., Cha, Y.-L., Youn, Y.-M., Choi, I.-H. (2014). Analysis of Factors Affecting Miscanthus Pellet Production and Pellet Quality using Response Surface Methodology. BioResources, 9(2), 3334–3346. doi:10.15376/biores.9.2.3334-3346
  • Na, B. I., Kim, Y. H., Lim, W. S., Lee, S. M., Lee, H. W. and Lee, J. W. (2013). Torrefaction of oil palm mesocarp fiber and their effect on pelletizing. Biomass and Bioenergy, 52, 159–165. doi:10.1016/j.biombioe.2013.02.041
  • Nguyen, Q. N., Cloutier, A., Stevanovic, T. and Achim, A. (2017). Pressurized hot water treatment of sugar maple and yellow birch wood particles for high quality fuel pellet production. Biomass and Bioenergy, 98, 206–213. doi:10.1016/j.biombioe.2017.01.028
  • Nielsen, N. P. K., Holm, J. K. and Felby, C. (2009). Effect of fiber orientation on compression and frictional properties of sawdust particles in fuel pellet production. Energy and Fuels, 23(6), 3211–3216. doi:10.1021/ef800923v
  • Nielsen, S. K., Mandø, M. and Rosenørn, A. B. (2020). Review of die design and process parameters in the biomass pelleting process. Powder Technology, 364, 971–985. doi:10.1016/j.powtec.2019.10.051
  • Ninduangdee, P. and Kuprianov, V. I. (2015). Combustion of an oil palm residue with elevated potassium content in a fluidized-bed combustor using alternative bed materials for preventing bed agglomeration. Bioresource Technology, 182, 272–281. doi:10.1016/j.biortech.2015.01.128
  • Nska, M. D. zy, Nski, S. O., Piekut, J. and Yildiz, G. (2020). The utilization of plum stones for pellet production and investigation of postcombustion flue gas emissions. Energies, 13(19). doi:10.3390/en13195107
  • Obidzinski, S., Dolzynska, M., Kowczyk-Sadowy, M., Jadwisienczak, K. and Sobczak, P. (2019). Densification and fuel properties of onion husks. Energies, 12(24). doi:10.3390/en12244687
  • Pradhan, P., Mahajani, S. M. and Arora, A. (2018). Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology, 181(October), 215–232. doi:10.1016/j.fuproc.2018.09.021
  • Si, Y., Hu, J., Wang, X., Yang, H., Chen, Y., Shao, J. and Chen, H. (2016). Effect of Carboxymethyl Cellulose Binder on the Quality of Biomass Pellets. Energy and Fuels, 30(7), 5799–5808. doi:10.1021/acs.energyfuels.6b00869
  • Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J. and Henriksen, U. B. (2012). Recent developments in biomass pelletization - a review. BioResources, 7(3), 4451–4490. doi:10.15376/biores.7.3.4451-4490
  • Sun, L., Wan, S. and Luo, W. (2013). Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresource Technology, 140, 406–413. doi:10.1016/j.biortech.2013.04.116
  • Suoware, T. O., Edelugo, S. O., Ugwu, B. N., Amula, E. and Digitemie, I. E. (2019). Development of flame retarded composite fibreboard for building applications using oil palm residue. Materiales de Construccion, 69(335), 1–8. doi:10.3989/mc.2019.10418
  • Theerarattananoon, K., Xu, F., Wilson, J., Ballard, R., Mckinney, L., Staggenborg, S., Wang, D. (2011). Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products, 33(2), 325–332. doi:10.1016/j.indcrop.2010.11.014
  • Thushari, I. and Babel, S. (2018). Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresource Technology, 248, 199–203. doi:10.1016/j.biortech.2017.06.106
  • Trezek, G. J. (1981). National Technical Information Service. Hydrocarbon Processing, 78(9), 21.
  • Tumuluru, J. S., Wright, C. T., Hess, R. and Kenney, K. L. (2011). A review of biomass densifi cation systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining, 6(3), 246–256. doi:10.1002/bbb.324
  • Ungureanu, N, Paraschiv, G., Ionescu, M. and Grigore, I. (2016). Production Status of Biomass Pellets – Review. Durable Agriculture – Agriculture of the Future, XLVI(February 2017), 574–581.
  • Ungureanu, Nicoleta, Vladut, V., Voicu, G., Dinca, M. N. and Zabava, B. S. (2018). Influence of biomass moisture content on pellet properties - Review. Engineering for Rural Development, 17(May), 1876–1883. doi:10.22616/ERDev2018.17.N449
  • van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A. and Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy, 35(9), 3748–3762. doi:10.1016/j.biombioe.2011.06.023
  • Yilmaz, H., Topakcı, M., Karayel, D. and Çanakcı, M. (2020). Comparison of the physical properties of cotton and sesame stalk pellets produced at different moisture contents and combustion of the finest pellets. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2020.1850931
APA YILMAZ H, TOPAKCI M, ÇANAKCI M, KARAYEL D (2022). Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. , 204 - 214. 10.33462/jotaf.976990
Chicago YILMAZ Hasan,TOPAKCI Mehmet,ÇANAKCI Murad,KARAYEL Davut Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. (2022): 204 - 214. 10.33462/jotaf.976990
MLA YILMAZ Hasan,TOPAKCI Mehmet,ÇANAKCI Murad,KARAYEL Davut Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. , 2022, ss.204 - 214. 10.33462/jotaf.976990
AMA YILMAZ H,TOPAKCI M,ÇANAKCI M,KARAYEL D Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. . 2022; 204 - 214. 10.33462/jotaf.976990
Vancouver YILMAZ H,TOPAKCI M,ÇANAKCI M,KARAYEL D Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. . 2022; 204 - 214. 10.33462/jotaf.976990
IEEE YILMAZ H,TOPAKCI M,ÇANAKCI M,KARAYEL D "Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues." , ss.204 - 214, 2022. 10.33462/jotaf.976990
ISNAD YILMAZ, Hasan vd. "Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues". (2022), 204-214. https://doi.org/10.33462/jotaf.976990
APA YILMAZ H, TOPAKCI M, ÇANAKCI M, KARAYEL D (2022). Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. Tekirdağ Ziraat Fakültesi Dergisi, 19(1), 204 - 214. 10.33462/jotaf.976990
Chicago YILMAZ Hasan,TOPAKCI Mehmet,ÇANAKCI Murad,KARAYEL Davut Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. Tekirdağ Ziraat Fakültesi Dergisi 19, no.1 (2022): 204 - 214. 10.33462/jotaf.976990
MLA YILMAZ Hasan,TOPAKCI Mehmet,ÇANAKCI Murad,KARAYEL Davut Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. Tekirdağ Ziraat Fakültesi Dergisi, vol.19, no.1, 2022, ss.204 - 214. 10.33462/jotaf.976990
AMA YILMAZ H,TOPAKCI M,ÇANAKCI M,KARAYEL D Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. Tekirdağ Ziraat Fakültesi Dergisi. 2022; 19(1): 204 - 214. 10.33462/jotaf.976990
Vancouver YILMAZ H,TOPAKCI M,ÇANAKCI M,KARAYEL D Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. Tekirdağ Ziraat Fakültesi Dergisi. 2022; 19(1): 204 - 214. 10.33462/jotaf.976990
IEEE YILMAZ H,TOPAKCI M,ÇANAKCI M,KARAYEL D "Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues." Tekirdağ Ziraat Fakültesi Dergisi, 19, ss.204 - 214, 2022. 10.33462/jotaf.976990
ISNAD YILMAZ, Hasan vd. "Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues". Tekirdağ Ziraat Fakültesi Dergisi 19/1 (2022), 204-214. https://doi.org/10.33462/jotaf.976990